forked from zjukg/NeuralKG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
121 lines (112 loc) · 4.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# -*- coding: utf-8 -*-
# from torch._C import T
# from train import Trainer
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from IPython import embed
import wandb
from neuralkg.utils import setup_parser
from neuralkg.utils.tools import *
from neuralkg.data.Sampler import *
from neuralkg.data.Grounding import GroundAllRules
def main():
parser = setup_parser() #设置参数
args = parser.parse_args()
if args.load_config:
args = load_config(args, args.config_path)
seed_everything(args.seed)
"""set up sampler to datapreprocess""" #设置数据处理的采样过程
train_sampler_class = import_class(f"neuralkg.data.{args.train_sampler_class}")
train_sampler = train_sampler_class(args) # 这个sampler是可选择的
#print(train_sampler)
test_sampler_class = import_class(f"neuralkg.data.{args.test_sampler_class}")
test_sampler = test_sampler_class(train_sampler) # test_sampler是一定要的
"""set up datamodule""" #设置数据模块
data_class = import_class(f"neuralkg.data.{args.data_class}") #定义数据类 DataClass
kgdata = data_class(args, train_sampler, test_sampler)
"""set up model"""
model_class = import_class(f"neuralkg.model.{args.model_name}")
if args.model_name == "RugE":
ground = GroundAllRules(args)
ground.PropositionalizeRule()
if args.model_name == "ComplEx_NNE_AER":
model = model_class(args, train_sampler.rel2id)
elif args.model_name == "IterE":
print(f"data.{args.train_sampler_class}")
model = model_class(args, train_sampler, test_sampler)
else:
model = model_class(args)
if args.model_name == 'SEGNN':
src_list = train_sampler.get_train_1.src_list
dst_list = train_sampler.get_train_1.dst_list
rel_list = train_sampler.get_train_1.rel_list
"""set up lit_model"""
litmodel_class = import_class(f"neuralkg.lit_model.{args.litmodel_name}")
if args.model_name =='SEGNN':
lit_model = litmodel_class(model, args, src_list, dst_list, rel_list)
else:
lit_model = litmodel_class(model, args)
"""set up logger"""
logger = pl.loggers.TensorBoardLogger("training/logs")
if args.use_wandb:
log_name = "_".join([args.model_name, args.dataset_name, str(args.lr)])
logger = pl.loggers.WandbLogger(name=log_name, project="NeuralKG")
logger.log_hyperparams(vars(args))
"""early stopping"""
early_callback = pl.callbacks.EarlyStopping(
monitor="Eval|mrr",
mode="max",
patience=args.early_stop_patience,
# verbose=True,
check_on_train_epoch_end=False,
)
"""set up model save method"""
# 目前是保存在验证集上mrr结果最好的模型
# 模型保存的路径
dirpath = "/".join(["output", args.eval_task, args.dataset_name, args.model_name])
model_checkpoint = pl.callbacks.ModelCheckpoint(
monitor="Eval|mrr",
mode="max",
filename="{epoch}-{Eval|mrr:.3f}",
dirpath=dirpath,
save_weights_only=True,
save_top_k=1,
)
callbacks = [early_callback, model_checkpoint]
# initialize trainer
if args.model_name == "IterE":
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=callbacks,
logger=logger,
default_root_dir="training/logs",
gpus="0,",
check_val_every_n_epoch=args.check_per_epoch,
reload_dataloaders_every_n_epochs=1 # IterE
)
else:
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=callbacks,
logger=logger,
default_root_dir="training/logs",
gpus="0,",
check_val_every_n_epoch=args.check_per_epoch,
)
'''保存参数到config'''
if args.save_config:
save_config(args)
if args.use_wandb:
logger.watch(lit_model)
if not args.test_only:
# train&valid
trainer.fit(lit_model, datamodule=kgdata)
# 加载本次实验中dev上表现最好的模型,进行test
path = model_checkpoint.best_model_path
else:
path = args.checkpoint_dir
lit_model.load_state_dict(torch.load(path)["state_dict"])
lit_model.eval()
trainer.test(lit_model, datamodule=kgdata)
if __name__ == "__main__":
main()