-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_func.py
195 lines (172 loc) · 8.95 KB
/
plot_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# This code takes in spectral transfer data and creates a KE energy budget plot
#
# This code is run from 'run_TKE_TPE_Ebudget.py'
#-----------------------------------------------------------------------------------------------------
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy.ndimage import gaussian_filter1d
def plot_Ebudget(TKE1,TKE2,TKE3,TPE12,TPE23,windstress,buoyancy,bottomDrag,kiso,ktiso,terms_dict): #figpath,climate_var,save_name,
# Define dk and dw
if not terms_dict.get('spatial_flag'):
dk = kiso[-1] - kiso[-2]
dw = ktiso[-5] - ktiso[-6]
print 'dw = ',dw
# For saving Tdiss
diss_savename = ''
# Define from terms_dict
gauss_smooth = terms_dict.get('gauss_smooth')
area_preserv = terms_dict.get('area_preserv')
savefigs = terms_dict.get('savefigs')
figpath = terms_dict.get('figpath')
# Specify smaller font size for screen viewing
font = {'family' : 'normal',
'size' : 10}
matplotlib.rc('font', **font)
# Filler for now
x = 1
if terms_dict.get('include_all_terms'):
# Frequency plots
if gauss_smooth and area_preserv:
print 'shapes=',ktiso.shape,dk.shape,TKE1.shape
# Create figure 1
plt.figure(num=1, figsize=(12,8))
# KEs
plt.plot(ktiso,gaussian_filter1d(TKE1*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='m',label='KE1')
plt.plot(ktiso,gaussian_filter1d(TKE2*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='m',linestyle='dashed',label='KE2')
plt.plot(ktiso,gaussian_filter1d(TKE3*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='m',linestyle='dotted',label='KE3')
# PEs
plt.plot(ktiso,gaussian_filter1d(TPE12*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='b',label='PE12')
plt.plot(ktiso,gaussian_filter1d(TPE23*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='b',linestyle='dashed',label='PE23')
plt.axhline(0,color='k',linestyle='dotted',linewidth=3.0)
# Windstress/Buoyancy/Bottom Drag
plt.plot(ktiso,gaussian_filter1d(windstress*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='c',label='windstress')
plt.plot(ktiso,gaussian_filter1d(buoyancy*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='g',label='buoyancy')
plt.plot(ktiso,gaussian_filter1d(bottomDrag*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='y',label='bottom drag')
#if include_dissipation:
# plt.plot(ktiso,gaussian_filter1d(np.sum(Tdiss1,axis=0)*dk*ktiso,sigma=gauss_smooth),linewidth=2.0,color='#778899',label='Tdiss1')
# plt.plot(ktiso,gaussian_filter1d(np.sum(Tdiss2,axis=0)*dk*ktiso,sigma=gauss_smooth),linewidth=2.0,color='#778899',linestyle='dashed',label='Tdiss2')
# plt.plot(ktiso,gaussian_filter1d(np.sum(Tdiss3,axis=0)*dk*ktiso,sigma=gauss_smooth),linewidth=2.0,color='#778899',linestyle='dotted',label='Tdiss3')
# diss_savename = 'withTdiss_'
plt.axvline(2*np.pi/500,color='k',linestyle='dashed',linewidth=3.0) # it takes a rossby wave 908 days to cross the basin (I think)
plt.xscale('log')
plt.axis('tight')
plt.title('Energy budget TKE(w), TPE(w), TBe(w)')
plt.xlabel('Frequency (rad/day)')
plt.ylabel('(nW/kg)/(rad/km)')
plt.legend()
if savefigs:
plt.savefig(figpath+'/'+terms_dict.get('fig_savename')+'_gauss_smooth'+str(gauss_smooth)+'area_preserv.png')
elif area_preserv:
# Create figure 1
plt.figure(num=6, figsize=(15,12))
# KEs
plt.plot(ktiso,TKE1*ktiso/dw,linewidth=5.0,color='m',label='KE1')
plt.plot(ktiso,TKE2*ktiso/dw,linewidth=5.0,color='m',linestyle='dashed',label='KE2')
plt.plot(ktiso,TKE3*ktiso/dw,linewidth=5.0,color='m',linestyle='dotted',label='KE3')
# PEs
plt.plot(ktiso,TPE12*ktiso/dw,linewidth=5.0,color='b',label='PE12')
plt.plot(ktiso,TPE23*ktiso/dw,linewidth=5.0,color='b',linestyle='dashed',label='PE23')
# Windstress/Buoyancy/Bottom Drag
plt.plot(ktiso,windstress*ktiso/dw,linewidth=5.0,color='c',label='windstress')
plt.plot(ktiso,buoyancy*ktiso/dw,linewidth=5.0,color='g',label='buoyancy')
plt.plot(ktiso,bottomDrag*ktiso/dw,linewidth=5.0,color='y',label='bottom drag')
plt.axhline(0,color='k',linestyle='dotted',linewidth=3.0)
plt.xscale('log')
plt.axis('tight')
plt.title('Spectral transfer energy budget')
plt.xlabel('Frequency')
plt.ylabel('(nW/kg)/(rad/km)')
plt.legend()
if savefigs:
plt.savefig(figpath+'/'+terms_dict.get('fig_savename')+'_area_preserv.png')
elif gauss_smooth:
# Create figure 2
plt.figure(num=6, figsize=(15,12))
# KEs
# KEs
plt.plot(ktiso,gaussian_filter1d(TKE1/dw,sigma=gauss_smooth),linewidth=5.0,color='m',label='KE1')
plt.plot(ktiso,gaussian_filter1d(TKE2/dw,sigma=gauss_smooth),linewidth=5.0,color='m',linestyle='dashed',label='KE2')
plt.plot(ktiso,gaussian_filter1d(TKE3/dw,sigma=gauss_smooth),linewidth=5.0,color='m',linestyle='dotted',label='KE3')
# PEs
plt.plot(ktiso,gaussian_filter1d(TPE12/dw,sigma=gauss_smooth),linewidth=5.0,color='b',label='PE12')
plt.plot(ktiso,gaussian_filter1d(TPE23/dw,sigma=gauss_smooth),linewidth=5.0,color='b',linestyle='dashed',label='PE23')
plt.axhline(0,color='k',linestyle='dotted',linewidth=3.0)
# Windstress/Buoyancy/Bottom Drag
plt.plot(ktiso,gaussian_filter1d(windstress/dw,sigma=gauss_smooth),linewidth=5.0,color='c',label='windstress')
plt.plot(ktiso,gaussian_filter1d(buoyancy/dw,sigma=gauss_smooth),linewidth=5.0,color='g',label='buoyancy')
plt.plot(ktiso,gaussian_filter1d(bottomDrag/dw,sigma=gauss_smooth),linewidth=5.0,color='y',label='bottom drag')
plt.axhline(0,color='k',linestyle='dotted',linewidth=3.0)
plt.xscale('log')
plt.axis('tight')
plt.title('Energy budget TKE(w), TPE(w), TBe(w)')
plt.xlabel('Frequency')
plt.ylabel('(nW/kg)/(rad/day)')
plt.legend()
if savefigs:
plt.savefig(figpath+'/'+terms_dict.get('fig_savename')+'_gauss_smooth'+str(gauss_smooth)+'.png')
'''
# Make plots with just TKE and TPE
else:
# Frequency plots of PE and KE only
if gauss_smooth and area_preserv:
# Create figure 1
plt.figure(num=6, figsize=(15,12))
# KEs
plt.plot(ktiso,gaussian_filter1d(np.sum(TKE1,axis=0)*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='m',label='KE1')
plt.plot(ktiso,gaussian_filter1d(np.sum(TKE2,axis=0)*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='m',linestyle='dashed',label='KE2')
plt.plot(ktiso,gaussian_filter1d(np.sum(TKE3,axis=0)*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='m',linestyle='dotted',label='KE3')
# PEs
plt.plot(ktiso,gaussian_filter1d(np.sum(TPE12,axis=0)*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='b',label='PE12')
plt.plot(ktiso,gaussian_filter1d(np.sum(TPE23,axis=0)*ktiso/dw,sigma=gauss_smooth),linewidth=5.0,color='b',linestyle='dashed',label='PE23')
plt.axhline(0,color='k',linestyle='dotted',linewidth=3.0)
plt.axvline(2*np.pi/500,color='k',linestyle='dashed',linewidth=3.0) # it takes a rossby wave 908 days to cross the basin (I think)
plt.xscale('log')
plt.axis('tight')
plt.title('Energy budget TKE(w) and TPE(w)')
plt.xlabel('Frequency (rad/day)')
plt.ylabel('(nW/kg)/(rad/km)')
plt.legend()
if savefigs:
plt.savefig(figpath+'/'+terms_dict.get('fig_savename')+'_gauss_smooth'+str(gauss_smooth)+'area_preserv.png')
elif area_preserv:
# Create figure 1
plt.figure(num=6, figsize=(15,12))
# KEs
plt.plot(ktiso,TKE1*ktiso/dw,linewidth=5.0,color='m',label='KE1')
plt.plot(ktiso,TKE2*ktiso/dw,linewidth=5.0,color='m',linestyle='dashed',label='KE2')
plt.plot(ktiso,TKE3*ktiso/dw,linewidth=5.0,color='m',linestyle='dotted',label='KE3')
# PEs
plt.plot(ktiso,TPE12*ktiso/dw,linewidth=5.0,color='b',label='PE12')
plt.plot(ktiso,TPE23*ktiso/dw,linewidth=5.0,color='b',linestyle='dashed',label='PE23')
plt.axhline(0,color='k',linestyle='dotted',linewidth=3.0)
plt.xscale('log')
plt.axis('tight')
plt.title('Energy budget TKE(w) and TPE(w)')
plt.xlabel('Frequency')
plt.ylabel('(nW/kg)/(rad/km)')
plt.legend()
if savefigs:
plt.savefig(figpath+'/'+terms_dict.get('fig_savename')+'_area_preserv.png')
elif gauss_smooth:
# Create figure 2
plt.figure(num=6, figsize=(15,12))
# KEs
plt.plot(ktiso,gaussian_filter1d(np.sum(TKE1,axis=0)*dk,sigma=gauss_smooth),linewidth=5.0,color='m',label='KE1')
plt.plot(ktiso,gaussian_filter1d(np.sum(TKE2,axis=0)*dk,sigma=gauss_smooth),linewidth=5.0,color='m',linestyle='dashed',label='KE2')
plt.plot(ktiso,gaussian_filter1d(np.sum(TKE3,axis=0)*dk,sigma=gauss_smooth),linewidth=5.0,color='m',linestyle='dotted',label='KE3')
# PEs
plt.plot(ktiso,gaussian_filter1d(np.sum(TPE12,axis=0)*dk,sigma=gauss_smooth),linewidth=5.0,color='b',label='PE12')
plt.plot(ktiso,gaussian_filter1d(np.sum(TPE23,axis=0)*dk,sigma=gauss_smooth),linewidth=5.0,color='b',linestyle='dashed',label='PE23')
plt.axhline(0,color='k',linestyle='dotted',linewidth=3.0)
plt.xscale('log')
plt.axis('tight')
plt.title('Energy budget TKE(w) and TPE(w)')
plt.xlabel('Frequency')
plt.ylabel('(nW/kg)/(rad/day)')
plt.legend()
if savefigs:
plt.savefig(figpath+'/'+terms_dict.get('fig_savename')+'_gauss_smooth'+str(gauss_smooth)+'.png')
'''
print 'plot_Ebudget is done!'
plt.show()