-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheye_cam.py
194 lines (173 loc) · 5.78 KB
/
eye_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/python
from __future__ import absolute_import, division, print_function, unicode_literals
""" Example showing what can be left out. ESC to quit"""
import demo
import pi3d
import numpy as np
import picamera
import picamera.array
import threading
import time
import io
from math import cos, sin, radians
SIZE = 64
NBYTES = SIZE * SIZE * 3
threshold = 40 # HSV value below this will be tracked
POS = np.arange(SIZE, dtype=np.float) # list of numbers for finding av. position
npa = np.zeros((SIZE, SIZE, 4), dtype=np.uint8) # array for loading image
npa[:,:,3] = 255 # set alpha 1.0 (effectively)
new_pic = False
# Create a pool of image processors
done = False
lock = threading.Lock()
pool = []
class ImageProcessor(threading.Thread):
def __init__(self):
super(ImageProcessor, self).__init__()
self.stream = io.BytesIO()
self.event = threading.Event()
self.terminated = False
self.start()
def run(self):
# This method runs in a separate thread
global done, npa, new_pic, SIZE, NBYTES
while not self.terminated:
# Wait for an image to be written to the stream
if self.event.wait(1):
try:
if self.stream.tell() >= NBYTES:
self.stream.seek(0)
# python2 doesn't have the getbuffer() method
#bnp = np.fromstring(self.stream.read(NBYTES),
# dtype=np.uint8).reshape(SIZE, SIZE, 3)
bnp = np.array(self.stream.getbuffer(),
dtype=np.uint8).reshape(SIZE, SIZE, 3)
npa[:,:,0:3] = bnp
new_pic = True
except Exception as e:
print(e)
finally:
# Reset the stream and event
self.stream.seek(0)
self.stream.truncate()
self.event.clear()
# Return ourselves to the pool
with lock:
pool.append(self)
def streams():
while not done:
with lock:
if pool:
processor = pool.pop()
else:
processor = None
if processor:
yield processor.stream
processor.event.set()
else:
# When the pool is starved, wait a while for it to refill
time.sleep(0.1)
def start_capture(): # has to be in yet another thread as blocking
global SIZE, pool
with picamera.PiCamera() as camera:
pool = [ImageProcessor() for i in range(3)]
camera.resolution = (SIZE, SIZE)
camera.framerate = 60
#camera.led = False
time.sleep(2)
camera.shutter_speed = camera.exposure_speed
camera.exposure_mode = 'off'
g = camera.awb_gains
print('g is {}'.format(g))
camera.awb_mode = 'off'
camera.awb_gains = g
camera.capture_sequence(streams(), format='rgb', use_video_port=True)
t = threading.Thread(target=start_capture)
t.start()
while not new_pic:
time.sleep(0.1)
########################################################################
DISPLAY = pi3d.Display.create(x=100, y=100, w=960, h=720)
DW, DH = DISPLAY.width, DISPLAY.height
CAMERA = pi3d.Camera(is_3d=False)
shader = pi3d.Shader("uv_flat")
matsh = pi3d.Shader("mat_flat")
tex = pi3d.Texture(npa)
screen = pi3d.Sprite(w=SIZE * 4, h=SIZE * 4, z=1.0)
screen.set_draw_details(shader, [tex])
target = pi3d.Sprite(w=20, h=20, z=0.9)
target.set_material([1.0, 0.7, 0.0])
target.set_shader(matsh)
# Fetch key presses ----------------------
mykeys = pi3d.Keyboard()
ax, ay, bx, by, cx, cy, dx, dy = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
BA, DA, CD, CB = 0.0, 0.0, 0.0, 0.0
SM = 0.98
nf = 0
tm = time.time()
mode = 0
while DISPLAY.loop_running():
k = mykeys.read()
if k >-1:
if k==27:
mykeys.close()
DISPLAY.destroy()
break
elif k==ord(' '): # space bar
mode = (mode + 1) % 6
elif k==ord('l'):
threshold *= 0.9
elif k==ord('o'):
threshold *= 1.1
if new_pic:
drk = np.zeros((SIZE, SIZE)) # 2D grid fill with 0.0
drk[np.where(npa[:,:,:3].max(axis=2) < threshold)] = 1.0 # change to 1.0 where img is dark
npa[:,:,0] = drk * 255
tot = drk.sum() # total sum for grid
if tot > 0:
x = (drk.sum(axis=0) * POS).sum() / tot # mean of dark pixels
y = (drk.sum(axis=1) * POS).sum() / tot
if mode == 0:
target.position(-DW / 2, -DH / 2, 0.9)
ax = ax * SM + x * (1.0 - SM)
ay = ay * SM + y * (1.0 - SM)
elif mode == 1:
target.position(-DW / 2, DH / 2, 0.9)
bx = bx * SM + x * (1.0 - SM)
by = by * SM + y * (1.0 - SM)
elif mode == 2:
target.position(DW / 2, DH / 2, 0.9)
cx = cx * SM + x * (1.0 - SM)
cy = cy * SM + y * (1.0 - SM)
elif mode == 3:
target.position(DW / 2, -DH / 2, 0.9)
dx = dx * SM + x * (1.0 - SM)
dy = dy * SM + y * (1.0 - SM)
elif mode == 4:
BA = (bx - ax) / (by - ay)
CD = (cx - dx) / (cy - dy)
DA = (dy - ay) / (dx - ax)
CB = (cy - by) / (cx - bx)
else:
target.position(-DW / 2 + DW * (x - ax - (y - ay) * BA) /
(dx + (y - dy) * CD - ax - (y - ay) * BA),
-DH / 2 + DH * (y - ay - (x - ax) * DA) /
(by + (x - bx) * CB - ay - (x - ax) * DA), 1.0)
if tot > 60.0:
threshold *= 0.99
if tot < 50.0:
threshold *= 1.01
tex.update_ndarray(npa)
new_pic = False
nf += 1
screen.draw()
target.draw()
print(nf / (time.time() - tm))
print(tot, threshold)
# Shut down the processors in an orderly fashion
while pool:
done = True
with lock:
processor = pool.pop()
processor.terminated = True
processor.join()