-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayes_superposition_svi_init.py
585 lines (455 loc) · 21.6 KB
/
bayes_superposition_svi_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import os, sys
import random
import ntpath
from collections import defaultdict
import ntpath
import pandas as pd # Windows users: I copy-paste the pandas,dateutil and pyltz folders from anaconda 2!! into the site-packages folder of pymol(only for temporary use, other wise it gets confused with the paths of the packages)
import numpy as np
from pandas import Series
# Biopython
from Bio import SeqRecord, Alphabet, SeqIO
from Bio.Seq import Seq
import Bio.PDB as PDB
from Bio.Seq import MutableSeq
from Bio.PDB.Polypeptide import is_aa
from Bio.SVDSuperimposer import SVDSuperimposer
# #Jax
# import jax.numpy as np
# import jax.random as random
# from jax.config import config as jax_config
# from jax.scipy.special import logsumexp
#Pymol
import pymol
from mpl_toolkits.mplot3d import Axes3D
import scipy.stats
# TORCH: "Tensors"
import torch
from torch.distributions import constraints, transform_to
#import tensorflow as tf
# PYRO
import pyro
import pyro.distributions as dist
from pyro import poutine
from pyro.contrib.autoguide import AutoDelta, AutoDiagonalNormal, AutoLowRankMultivariateNormal, init_to_median
from torch.optim import Adam, LBFGS
from pyro.infer import SVI, TraceEnum_ELBO, config_enumerate, Trace_ELBO, TraceGraph_ELBO,JitTrace_ELBO
#Seaborn
import seaborn as sns
# Matplotlib
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.use('agg') #TkAgg
import tqdm
tqdm.monitor_interval = 0
# Early STOPPING
from ignite.handlers import EarlyStopping
from ignite.engine import Engine, Events
from pyro.infer import SVI, EmpiricalMarginal
from pyro.optim import PyroOptim
# NUTS sampler
from pyro.infer.abstract_infer import TracePredictive
from pyro.infer.mcmc.nuts import NUTS
from pyro.infer.mcmc.api import MCMC
from pyro.infer.mcmc.util import initialize_model, predictive
from pyro.util import ignore_experimental_warning
# Posterior probabilities
from pyro.infer.abstract_infer import EmpiricalMarginal
#LOGGING (stats for posterior)
import logging
torch.multiprocessing.set_sharing_strategy('file_system') # Needed to avoid runtime errors
class SVIEngine(Engine):
def __init__(self, *args, step_args=None, **kwargs):
self.svi = SVI(*args, **kwargs)
self._step_args = step_args or {}
super(SVIEngine, self).__init__(self._update)
def _update(self, engine, batch):
return -engine.svi.step(batch, **self._step_args)
PyroOptim.state_dict = lambda self: self.get_state()
def Max_variance(structure):
'''Calculates the maximum distance to the origin of the structure, this value will define the variance of the prior's distribution'''
centered = Center_torch(structure)
mul = [email protected](structure)
max_var = torch.sqrt(torch.max(torch.diag(mul)))
return max_var
def Extract_coordinates_from_PDB(PDB_file,type):
''' Returns both the alpha carbon coordinates contained in the PDB file and the residues coordinates for the desired chains'''
from Bio.PDB.PDBParser import PDBParser
from Bio.PDB import MMCIFParser
Name = ntpath.basename(PDB_file).split('.')[0]
try:
parser = PDB.PDBParser()
structure = parser.get_structure('%s' % (Name), PDB_file)
except:
parser = MMCIFParser()
structure = parser.get_structure('%s' % (Name), PDB_file)
############## Iterating over residues to extract all of them even if there is more than 1 chain
if type=='models':
CoordinatesPerModel = []
for model in structure:
model_coord =[]
for chain in model:
for residue in chain:
if is_aa(residue.get_resname(), standard=True):
model_coord.append(residue['CA'].get_coord())
CoordinatesPerModel.append(model_coord)
return CoordinatesPerModel
elif type=='chains':
CoordinatesPerChain=[]
for model in structure:
for chain in model:
chain_coord = []
for residue in chain:
if is_aa(residue.get_resname(), standard=True):
chain_coord.append(residue['CA'].get_coord())
CoordinatesPerChain.append(chain_coord)
return CoordinatesPerChain
elif type =='all':
alpha_carbon_coordinates = []
for chain in structure.get_chains():
for residue in chain:
if is_aa(residue.get_resname(), standard=True):
# try:
alpha_carbon_coordinates.append(residue['CA'].get_coord())
# except:
# pass
return alpha_carbon_coordinates
def Average_Structure(tuple_struct):
average = sum(list(tuple_struct)) / len(
tuple_struct) # sum element-wise the list of tensors containing the coordinates #tf.add_n
return average
def Center_numpy(Array):
'''Centering to the origin the data'''
mean = np.mean(Array, axis=0)
centered_array = Array - mean
return centered_array
def Center_torch(Array):
'''Centering to the origin the data'''
mean = torch.mean(Array, dim=0)
centered_array = Array - mean
return centered_array
def Quaternions2Rotation(ri_vec):
"""Inputs a sample of unit quaternion and transforms it into a rotation matrix"""
# argument i guarantees that the symbolic variable name will be identical everytime this method is called
# repeating a symbolic variable name in a model will throw an error
# the first argument states that i will be the name of the rotation made
theta1 = 2 * np.pi * ri_vec[1]
theta2 = 2 * np.pi * ri_vec[2]
r1 = torch.sqrt(1 - ri_vec[0])
r2 = torch.sqrt(ri_vec[0])
qw = r2 * torch.cos(theta2)
qx = r1 * torch.sin(theta1)
qy = r1 * torch.cos(theta1)
qz = r2 * torch.sin(theta2)
R = torch.eye(3, 3) # device =cuda
# filling the rotation matrix
# Evangelos A. Coutsias, et al "Using quaternions to calculate RMSD" In: Journal of Computational Chemistry 25.15 (2004)
# Row one
R[0, 0] = qw ** 2 + qx ** 2 - qy ** 2 - qz ** 2
R[0, 1] = 2 * (qx * qy - qw * qz)
R[0, 2] = 2 * (qx * qz + qw * qy)
# Row two
R[1, 0] = 2 * (qx * qy + qw * qz)
R[1, 1] = qw ** 2 - qx ** 2 + qy ** 2 - qz ** 2
R[1, 2] = 2 * (qy * qz - qw * qx)
# Row three
R[2, 0] = 2 * (qx * qz - qw * qy)
R[2, 1] = 2 * (qy * qz + qw * qx)
R[2, 2] = qw ** 2 - qx ** 2 - qy ** 2 + qz ** 2
return R
def RMSD_numpy(X1, X2):
import torch.nn.functional as F
return F.pairwise_distance(torch.from_numpy(X1), torch.from_numpy(X2))
def RMSD(X1, X2):
import torch.nn.functional as F
return F.pairwise_distance(X1, X2)
def RMSD_biopython(x, y):
sup = SVDSuperimposer()
sup.set(x, y)
sup.run()
rot, tran = sup.get_rotran()
return rot
def Read_Data(prot1, prot2, type='models', models =(0,1), RMSD=True):
'''Reads different types of proteins and extracts the alpha carbons from the models, chains or all . The model,
chain or aminoacid range numbers are indicated by the tuple models'''
if type == 'models':
X1_coordinates = Extract_coordinates_from_PDB('{}'.format(prot1),type)[models[0]]
X2_coordinates = Extract_coordinates_from_PDB('{}'.format(prot2),type)[models[1]]
elif type == 'chains':
X1_coordinates = Extract_coordinates_from_PDB('{}'.format(prot1),type)[models[0]][0:141]
X2_coordinates = Extract_coordinates_from_PDB('{}'.format(prot2),type)[models[1]][0:141]
elif type == 'all':
X1_coordinates = Extract_coordinates_from_PDB('{}'.format(prot1),type)[models[0]:models[1]]
X2_coordinates = Extract_coordinates_from_PDB('{}'.format(prot2),type)[models[0]:models[1]]
#Apply RMSD to the protein that needs to be superimposed
X1_Obs_Stacked = Center_numpy(np.vstack(X1_coordinates))
X2_Obs_Stacked = Center_numpy(np.vstack(X2_coordinates))
if RMSD:
X2_Obs_Stacked = torch.from_numpy(np.dot(X2_Obs_Stacked, RMSD_biopython(X1_Obs_Stacked, X2_Obs_Stacked)))
X1_Obs_Stacked = torch.from_numpy(X1_Obs_Stacked)
else:
X1_Obs_Stacked = torch.from_numpy(X1_Obs_Stacked)
X2_Obs_Stacked = torch.from_numpy(X2_Obs_Stacked)
data_obs = (X1_Obs_Stacked, X2_Obs_Stacked)
# ###PLOT INPUT DATA################
x = Center_numpy(np.vstack(X1_coordinates))[:, 0]
y = Center_numpy(np.vstack(X1_coordinates))[:, 1]
z = Center_numpy(np.vstack(X1_coordinates))[:, 2]
fig = plt.figure(figsize=(18, 16), dpi=80)
ax = fig.add_subplot(111, projection='3d')
plt.plot(x, y, z)
ax.plot(x, y, z, c='b', label='data1', linewidth=3.0)
#orange graph
x2 = Center_numpy(np.vstack(X2_coordinates))[:, 0]
y2=Center_numpy(np.vstack(X2_coordinates))[:, 1]
z2=Center_numpy(np.vstack(X2_coordinates))[:, 2]
ax.plot(x2, y2,z2, c='r', label='data2',linewidth=3.0)
ax.legend()
plt.savefig(r"Initial.png")
plt.clf() #Clear the plot, otherwise it will give an error when plotting the loss
plt.close()
rmsd = RMSD_numpy(Center_numpy(np.vstack(X1_coordinates)),Center_numpy(np.vstack(X2_coordinates)))
plt.plot(rmsd.numpy())
plt.savefig("RMSD.png")
return data_obs
def model(data):
max_var, data1, data2 = data
### 1. prior over mean M
M = pyro.sample("M", dist.StudentT(1,0, 3).expand_by([data1.size(0),data1.size(1)]).to_event(2))
### 2. Prior over variances for the normal distribution - HalfCauchy?
U = pyro.sample("U", dist.HalfNormal(1).expand_by([data1.size(0)]).to_event(1))
U = U.reshape(data1.size(0),1).repeat(1,3).view(-1) #Triplicate the rows for the subsequent mean calculation
## 3. prior over translations T_i: Sample translations for each of the x,y,z coordinates
T2 = pyro.sample("T2", dist.Normal(0, 1).expand_by([3]).to_event(1))
## 4. prior over rotations R_i
ri_vec = pyro.sample("ri_vec",dist.Uniform(0, 1).expand_by([3]).to_event(1)) # Uniform distribution
R = Quaternions2Rotation(ri_vec)
M_T1 = M
M_R2_T2 = M @ R + T2
# 5. Sampling from several Univariate Distributions (approximating the posterior distribution ):
# The observations are conditionally independant given the U, which is sampled outside the loop
# UNIVARIATE NORMALS
with pyro.plate("plate_univariate", data1.size(0)*data1.size(1), dim=-1):
pyro.sample("X1", dist.StudentT(1, M_T1.view(-1), U),obs=data1.view(-1))
pyro.sample("X2", dist.StudentT(1, M_R2_T2.view(-1), U), obs=data2.view(-1))
def _get_initial_trace(data_obs, average):
'''Initialize MCMC and NUTS'''
#INITIALIZE PRIOR:
def init_prior(site):
if site["name"] == "ri_vec":
return torch.tensor([0.9, 0.1, 0.9])
elif site["name"] == "M":
return average
else:
return init_to_median(site)
# GUIDE
global_guide = AutoDelta(model,init_loc_fn=init_prior)
# OPTIMIZER
optim = pyro.optim.AdagradRMSProp(dict()) #https://github.com/pyro-ppl/pyro/blob/58277184310ef76a62420a38c300e84cd12b88ad/pyro/optim/adagrad_rmsprop.py
elbo = JitTrace_ELBO()
# STOCHASTIC VARIATIONAL INFERENCE
svi_engine = SVIEngine(model, global_guide, optim, loss=elbo)
pbar = tqdm.tqdm()
loss_list = []
# INITIALIZING PRIOR : Changing in the first iteration the value for the prior in order to constrain the prior over the rotations
#pyro.param("auto_ri_vec", torch.Tensor([0.9, 0.1, 0.9]),constraint=constraints.unit_interval) # constraint = constraints.simplex doesn't work exactly
# Initialize the Mean Structure (each coordinate separately): NO CONSTRAINTS!!!
#pyro.param("auto_M",average)
@svi_engine.on(Events.EPOCH_COMPLETED)
def update_progress(svi_engine):
pbar.update(1)
loss_list.append(-svi_engine.state.output)
pbar.set_description(
"[epoch {}] avg train loss: {}".format(svi_engine.state.epoch, svi_engine.state.output))
# HANDLER
# CHANGE PATIENCE PARAMETER FOR MORE COMPLEX PROTEINS
handler = EarlyStopping(patience=100, score_function=lambda eng: eng.state.output, trainer=svi_engine)
# SVI
svi_engine.add_event_handler(Events.EPOCH_COMPLETED, handler)
svi_engine.run([data_obs], max_epochs=15000)
return svi_engine.svi.exec_traces
def GetPosteriorNUTS(data_obs, name1, samples=1250, warmup = 250, chains = 1):
average = Average_Structure(data_obs)
# Running MCMC using NUTS as selected kernel
nuts_kernel = NUTS(model, jit_compile=True, ignore_jit_warnings=True, max_tree_depth=5)
# INITIALIZING PRIOR Changing in the first iteration the value for the prior in order to constrain the prior over the rotations
# _get_initial_trace(data_obs, average)
nuts_kernel.initial_trace = _get_initial_trace(data_obs, average)
mcmc = MCMC(nuts_kernel, num_samples=samples, warmup_steps=warmup, num_chains=chains)
mcmc.run(data_obs)
max_var, data1, data2 = data_obs
samples_posterior = mcmc.get_samples()
with ignore_experimental_warning():
posterior_predicted = predictive(model, samples_posterior, data_obs)
# Posterior_predicted["X1"] has dimensions (1250, 213) -> (n_samples, n_cA* 3 coordinates)
nrows1 = data1.shape[0]
x1 = posterior_predicted["X1"][0,:]
X1 = x1.numpy().reshape([nrows1,3])
nrows2 = data2.shape[0]
x2 = posterior_predicted["X2"][0, :]
X2 = x2.numpy().reshape([nrows2, 3])
# Get summary statistics from the mcmc run
#mcmc.summary(0.5)
# Rotation matrix posterior samples
ri_post_samples = samples_posterior["ri_vec"]
# Mean structure M output
M_post_samples = samples_posterior["M"]
M = M_post_samples.mean(dim=0)
# M is a tensor with dimensions (n*AA, 3)
# Variance per row posterior samples
U_post_samples = samples_posterior["U"]
# Translation T output
T2_post_samples = samples_posterior["T2"]
import matplotlib
matplotlib.rcParams['legend.fontsize'] = 10
#################PLOTS################################################
fig = plt.figure(figsize=(18, 16), dpi=80)
ax = fig.add_subplot(111, projection='3d')
# blue graph
x = X1[:, 0]
y = X1[:, 1]
z = X1[:, 2]
ax.plot(x, y, z, c='b', label='X1', linewidth=3.0)
# red graph
x2 = X2[:, 0]
y2 = X2[:, 1]
z2 = X2[:, 2]
ax.plot(x2, y2, z2, c='r', label='X2', linewidth=3.0)
###green graph
x3 = M.numpy()[:, 0]
y3 = M.numpy()[:, 1]
z3 = M.numpy()[:, 2]
ax.plot(x3, y3, z3, c='g', label='Mean structure', linewidth=3.0)
ax.legend()
plt.title("Initialized NUTS model")
plt.savefig("Bayesian_Result_Samples_{}_{}".format(name1, samples + warmup))
plt.clf()
plt.plot(RMSD(data1, data2).numpy(), linewidth = 8.0)
plt.plot(RMSD(torch.from_numpy(X1), torch.from_numpy(X2)).numpy(), linewidth=8.0)
plt.ylabel('Pairwise distances',fontsize='46')
plt.xlabel('Amino acid position',fontsize='46')
plt.title('{}'.format(name1.upper()),fontsize ='46')
plt.gca().legend(('RMSD', 'NUTS Theseus-PP'),fontsize='40')
plt.savefig(r"Distance_Differences_{}_Bayesian".format(name1))
plt.close()
return X1, X2, ri_post_samples, M_post_samples, T2_post_samples
def write_ATOM_line(structure, file_name):
import os
"""Transform coordinates to PDB file: Add intermediate coordinates to be able to visualize Mean structure in PyMOL"""
expanded_structure = np.ones(shape=(2 * len(structure) - 1, 3)) # The expanded structure contains extra rows between the alpha carbons
averagearray = np.zeros(shape=(len(structure) - 1, 3)) # should be of size len(structure) -1
for index, row in enumerate(structure):
if index != len(structure) and index != len(structure) - 1:
averagearray[int(index)] = (structure[int(index)] + structure[int(index) + 1]) / 2
else:
pass
# split the expanded structure in sets , where each set will be structure[0] + number*average
# The even rows of the 'expanded structure' are simply the rows of the original structure
expanded_structure[0::2] = structure
expanded_structure[1::2] = averagearray
structure = expanded_structure
aa_name = "ALA"
aa_type = "CA"
if os.path.isfile(file_name):
os.remove(file_name)
for i in range(len(structure)):
with open(file_name, 'a') as f:
f.write(
"ATOM{:7d} {} {} A{:4d}{:12.3f}{:8.3f}{:8.3f} 0.00 0.00 X \n".format(i, aa_type, aa_name,
i, structure[i, 0],
structure[i, 1],
structure[i, 2]))
else:
for i in range(len(structure)):
with open(file_name, 'a') as f:
f.write(
"ATOM{:7d} {} {} A{:4d}{:12.3f}{:8.3f}{:8.3f} 0.00 0.00 X \n".format(i, aa_type, aa_name,
i, structure[i, 0],
structure[i, 1],
structure[i, 2]))
def Pymol(*args):
'''Visualization program'''
#LAUNCH PYMOL
launch=False
if launch:
pymol.pymol_argv = ['pymol'] + sys.argv[1:]
pymol.finish_launching(['pymol'])
def Colour_Backbone(selection,color,color_digit):
#pymol.cmd.select("alphas", "name ca") #apparently nothing is ca
#pymol.cmd.select("sidechains", "! alphas") #select the opposite from ca, which should be the side chains, not working
pymol.cmd.show("sticks", selection)
pymol.cmd.set_color(color,color_digit)
pymol.cmd.color(color,selection)
# Load Structures and apply the function
#colornames=['red','green','blue','orange','purple','yellow','black','aquamarine']
#Palette of colours
pal = sns.color_palette("PuBuGn_d",100) #RGB numbers for the palette colours
colornames = ["blue_{}".format(i) for i in range(0,len(pal))]
snames=[]
for file,color,color_digit in zip(args,colornames,pal):
sname = ntpath.basename(file)
snames.append(sname)
pymol.cmd.load(file, sname) #discrete 1 will create different sets of atoms for each model
pymol.cmd.bg_color("white")
pymol.cmd.extend("Colour_Backbone", Colour_Backbone)
Colour_Backbone(sname,color,color_digit)
pymol.cmd.png("Superposition_Bayesian_Pymol_{}".format(snames[0].split('_')[2]))
def Sample_Posterior(X1, X2, name1, ri_MCMCsamples, T_MCMCsamples, num_samples):
# Choose a random sample between 0 and the number of MCMC samplings, the number of times specified in num_samples
indexes = random.sample(range(0, 1250), num_samples)
plt.clf()
for i in indexes:
Rotation = Quaternions2Rotation(ri_MCMCsamples[i,:]) #torch
invRotation = Rotation.inverse()
Translation = T_MCMCsamples[i,:]
X2_NUTS = np.dot(X2.numpy() + Translation.numpy(), invRotation.cpu().numpy())
write_ATOM_line(X2_NUTS, os.path.join("{}_PDB_files".format(name1),'NUTS_{}_X2_{}.pdb'.format(name1, i)))
plt.plot(RMSD(X1, torch.from_numpy(X2_NUTS)).numpy(), linewidth=1.0, c="b", alpha=0.05)
plt.plot(RMSD(X1, X2).numpy(), linewidth=3.0, c="r")
plt.ylabel('Pairwise distances (Angstroms)')
plt.xlabel('Amino acid position')
plt.title('{}'.format(name1.upper()))
plt.savefig(r"Distance_NUTS_{}".format(name1))
plt.close()
#names = [os.path.join("{}_PDB_files".format(name1),'NUTS_{}_X2_{}.pdb'.format(name1, i)) for i in indexes] #exchange indexes with range(0, num_samples)
#Pymol(*names)
def Create_Folder(folder_name):
""" Folder for all the generated images It will updated everytime!!! Save the previous folder before running again. Creates folder in current directory"""
import os
import shutil
basepath = os.getcwd()
if not basepath:
newpath = folder_name
else:
newpath = basepath + "/%s" % folder_name
if not os.path.exists(newpath):
try:
original_umask = os.umask(0)
os.makedirs(newpath, 0o777)
finally:
os.umask(original_umask)
else:
shutil.rmtree(newpath) # removes all the subdirectories!
os.makedirs(newpath,0o777)
#if __name__ == "__main__":
name1 ="my_3qrf"
name2 ="my_1owr"
Create_Folder("{}_PDB_files".format(name1))
# Read protein data for X1 and X2
data_obs = Read_Data('/home/pabswfly/PycharmProjects/theseus/PDB_files/{}.pdb'.format(name1),
'/home/pabswfly/PycharmProjects/theseus/PDB_files/{}.pdb'.format(name2),
type='all', models =(0, 100), RMSD=True)
# Organize protein data
max_var = Max_variance(data_obs[0])
data1, data2 = data_obs
data_obs = max_var, data1, data2
# Get samples from the posterior distribution inferred with MCMC and NUTS
X1, X2, ri_post_samples, M_post_samples, T_post_samples = GetPosteriorNUTS(data_obs, name1)
# Write PDBs for prot1 and prot2 superimposed with RMSD
write_ATOM_line(data1, os.path.join("{}_PDB_files".format(name1),'RMSD_{}_data1.pdb'.format(name1)))
write_ATOM_line(data2, os.path.join("{}_PDB_files".format(name1),'RMSD_{}_data2.pdb'.format(name1)))
# Write PDBs for X1 and X2 superimposed with NUTS inference
write_ATOM_line(X1, os.path.join("{}_PDB_files".format(name1),'Result_MCMC_{}_X1.pdb'.format(name1)))
write_ATOM_line(X2, os.path.join("{}_PDB_files".format(name1),'Result_MCMC_{}_X2.pdb'.format(name2)))
#Pymol("Result_MCMC_{}_X1.pdb".format(name1), "Result_MCMC_{}_X2.pdb".format(name2))
num_samples = 20
Sample_Posterior(data1, data2, name1, ri_post_samples, T_post_samples, num_samples)