-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgp_all.stan
88 lines (79 loc) · 3.67 KB
/
gp_all.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include covs.stan // definitions for the covariance functions
data {
int<lower=1> N1;
int<lower=1> N2;
int<lower=1> N_w;
int<lower=1> D_w;
vector[N1] x1_d; // days (training set)
vector[D_w] x1_w[N1]; // weather-data (training set)
vector[N1] y1; // cycling count (training set)
vector[N2] x2_d; // days (all)
vector[D_w] x2_w[N2]; // weather-data (all)
vector[D_w] x_te[N_w]; // temperature, grid
vector[D_w] x_ra_h[N_w]; // rain, grid (hot weather)
vector[D_w] x_ra_c[N_w]; // rain, grid (cold weather)
real<lower=0> delta; // regularization
real<lower=0> sd_sig; // sd for sigma
real<lower=0> sd_a; // sd for marginal standard deviations
real<lower=0> gamma; // period of the periodic CF
real<lower=0> m_cross_pe; // mean number of
real<lower=0> sd_cross_pe; // sd of the same quantity
}
parameters {
real<lower=0> alpha_pe; // marginal sd for the periodic component
real<lower=0> alpha_ard; // marginal sd for the weather-data component
real<lower=0> rho_pe; // length-scale for the periodic component
vector<lower=0>[D_w] rho_ard; // length-scales for the weather-data component
real<lower=0> sigma; // noise in the observations
vector[N1] eta; // for the cholesky transformed implementation
real<lower=0> cross; // the number of times the trend in period crosses 0 in a year
}
transformed parameters {
real<lower=0> rho_se = 365/(cross*pi()); // length-scale for the long-term component
}
model {
vector[N1] f1;
{
matrix[N1, N1] K_pe = cov_lperiodic_s(x1_d, alpha_pe, rho_se, rho_pe, gamma);
matrix[N1, N1] K_ard = cov_ard_s(x1_w, alpha_ard, rho_ard);
matrix[N1, N1] K = K_pe + K_ard + diag_matrix(rep_vector(delta, N1));
matrix[N1, N1] L_K = cholesky_decompose(K);
f1 = L_K * eta;
}
cross ~ normal(m_cross_pe, sd_cross_pe);
alpha_ard ~ normal(0, sd_a);
alpha_pe ~ normal(0, sd_a);
rho_ard ~ inv_gamma(5, 5);
rho_pe ~ inv_gamma(5, 5);
sigma ~ normal(0, sd_sig);
eta ~ normal(0, 1);
y1 ~ normal(f1, sigma);
}
generated quantities {
vector[N2] f2; // latent function at all points
vector[N2] y2; // predictions of y at all points
vector[N2] f_pe; // periodic component at a grid
vector[N_w] f_te; // temperature at a grid
vector[N_w] f_ra_h; // rain at a grid, hot weather
vector[N_w] f_ra_c; // rain at a grid, cold weather
{
matrix[N1, N1] K11 = cov_lperiodic_s(x1_d, alpha_pe, rho_se, rho_pe, gamma) +
cov_ard_s(x1_w, alpha_ard, rho_ard);
matrix[N1, N2] K12_pe = cov_lperiodic(x1_d, x2_d, alpha_pe, rho_se, rho_pe, gamma);
matrix[N1, N2] K12 = K12_pe + cov_ard(x1_w, x2_w, alpha_ard, rho_ard);
matrix[N2, N2] K22_pe = cov_lperiodic_s(x2_d, alpha_pe, rho_se, rho_pe, gamma);
matrix[N2, N2] K22 = K22_pe + cov_ard_s(x2_w, alpha_ard, rho_ard);
matrix[N1, N_w] K12_te = cov_ard(x1_w, x_te, alpha_ard, rho_ard);
matrix[N1, N_w] K12_ra_h = cov_ard(x1_w, x_ra_h, alpha_ard, rho_ard);
matrix[N1, N_w] K12_ra_c = cov_ard(x1_w, x_ra_c, alpha_ard, rho_ard);
matrix[N_w, N_w] K22_te = cov_ard_s(x_te, alpha_ard, rho_ard);
matrix[N_w, N_w] K22_ra_h = cov_ard_s(x_ra_h, alpha_ard, rho_ard);
matrix[N_w, N_w] K22_ra_c = cov_ard_s(x_ra_c, alpha_ard, rho_ard);
f2 = gp_pred_rng(y1, K11, K12, K22, sigma, delta);
f_pe = gp_pred_rng(y1, K11, K12_pe, K22_pe, sigma, delta);
f_te = gp_pred_rng(y1, K11, K12_te, K22_te, sigma, delta);
f_ra_h = gp_pred_rng(y1, K11, K12_ra_h, K22_ra_h, sigma, delta);
f_ra_c = gp_pred_rng(y1, K11, K12_ra_c, K22_ra_c, sigma, delta);
}
for (i in 1:N2) y2[i] = normal_rng(f2[i], sigma);
}