-
Notifications
You must be signed in to change notification settings - Fork 14
/
run.py
268 lines (234 loc) · 10.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import socket
import logging
from timeit import default_timer as timer
from tqdm import tqdm
import jax
from jax import numpy as jnp
import optax
import haiku as hk
from omegaconf import OmegaConf
from hydra.utils import instantiate, get_class, call
from score_sde.models.flow import SDEPushForward
from score_sde.losses import get_ema_loss_step_fn
from score_sde.utils import TrainState, save, restore
from score_sde.utils.loggers_pl import LoggerCollection
from score_sde.datasets import random_split, DataLoader, TensorDataset
from riemannian_score_sde.utils.normalization import compute_normalization
from riemannian_score_sde.utils.vis import plot, plot_ref
log = logging.getLogger(__name__)
def run(cfg):
def train(train_state):
loss = instantiate(
cfg.loss, pushforward=pushforward, model=model, eps=cfg.eps, train=True
)
train_step_fn = get_ema_loss_step_fn(loss, optimizer=optimiser, train=True)
train_step_fn = jax.jit(train_step_fn)
rng = train_state.rng
t = tqdm(
range(train_state.step, cfg.steps),
total=cfg.steps - train_state.step,
bar_format="{desc}{bar}{r_bar}",
mininterval=1,
)
train_time = timer()
total_train_time = 0
for step in t:
data, context = next(train_ds)
batch = {"data": data, "context": context}
rng, next_rng = jax.random.split(rng)
(rng, train_state), loss = train_step_fn((next_rng, train_state), batch)
if jnp.isnan(loss).any():
log.warning("Loss is nan")
return train_state, False
if step % 50 == 0:
logger.log_metrics({"train/loss": loss}, step)
t.set_description(f"Loss: {loss:.3f}")
if step > 0 and step % cfg.val_freq == 0:
logger.log_metrics(
{"train/time_per_it": (timer() - train_time) / cfg.val_freq}, step
)
total_train_time += timer() - train_time
save(ckpt_path, train_state)
eval_time = timer()
if cfg.train_val:
evaluate(train_state, "val", step)
logger.log_metrics({"val/time_per_it": (timer() - eval_time)}, step)
if cfg.train_plot:
generate_plots(train_state, "val", step=step)
train_time = timer()
logger.log_metrics({"train/total_time": total_train_time}, step)
return train_state, True
def evaluate(train_state, stage, step=None):
log.info("Running evaluation")
dataset = eval_ds if stage == "val" else test_ds
model_w_dicts = (model, train_state.params_ema, train_state.model_state)
likelihood_fn = pushforward.get_log_prob(model_w_dicts, train=False)
likelihood_fn = jax.jit(likelihood_fn)
logp, nfe, N = 0.0, 0.0, 0
tot = 0
if hasattr(dataset, "__len__"):
for batch in dataset:
logp_step, nfe_step = likelihood_fn(*batch)
logp += logp_step.sum()
nfe += nfe_step
N += logp_step.shape[0]
else:
dataset.batch_dims = [cfg.eval_batch_size]
samples = round(20_000 / cfg.eval_batch_size)
for i in range(samples):
batch = next(dataset)
logp_step, nfe_step = likelihood_fn(*batch)
logp += logp_step.sum()
nfe += nfe_step
N += logp_step.shape[0]
tot += logp_step.shape[0]
dataset.batch_dims = [cfg.batch_size]
logp /= N
nfe /= len(dataset) if hasattr(dataset, "__len__") else samples
logger.log_metrics({f"{stage}/logp": logp}, step)
log.info(f"{stage}/logp = {logp:.3f}")
logger.log_metrics({f"{stage}/nfe": nfe}, step)
log.info(f"{stage}/nfe = {nfe:.1f}")
if stage == "test": # Estimate normalisation constant
default_context = context[0] if context is not None else None
Z = compute_normalization(
likelihood_fn, data_manifold, context=default_context
)
log.info(f"Z = {Z:.2f}")
logger.log_metrics({f"{stage}/Z": Z}, step)
def generate_plots(train_state, stage, step=None):
log.info("Generating plots")
rng = jax.random.PRNGKey(cfg.seed)
dataset = eval_ds if stage == "eval" else test_ds
## p_0 (backward)
M = 32 if isinstance(pushforward, SDEPushForward) else 8
model_w_dicts = (model, train_state.params_ema, train_state.model_state)
sampler_kwargs = dict(N=100, eps=cfg.eps, predictor="GRW")
sampler = pushforward.get_sampler(model_w_dicts, train=False, **sampler_kwargs)
x0, context = next(dataset)
shape = (int(cfg.batch_size * M),)
rng, next_rng = jax.random.split(rng)
x = sampler(next_rng, shape, context)
prop_in_M = data_manifold.belongs(x, atol=1e-4).mean()
log.info(f"Prop samples in M = {100 * prop_in_M.item():.1f}%")
# samples from model
likelihood_fn = pushforward.get_log_prob(model_w_dicts, train=False)
log_prob = jax.jit(lambda x: likelihood_fn(x)[0])
plt = plot(data_manifold, None, x, log_prob=log_prob)
logger.log_plot(f"x0_bwd", plt, step)
# samples from data
if step <= 0:
dataset.batch_dims = shape[0]
x0 = next(dataset)[0]
log_prob = dataset.log_prob if hasattr(dataset, "log_prob") else None
plt = plot(data_manifold, None, x0, log_prob=log_prob)
logger.log_plot(f"x0", plt, step)
dataset.batch_dims = cfg.batch_size
## p_T (forward)
if step <= 0 and isinstance(pushforward, SDEPushForward):
sampler = pushforward.get_sampler(
model_w_dicts, train=False, reverse=False, **sampler_kwargs
)
zT = sampler(rng, None, context, z=transform.inv(x0))
plt = plot_ref(model_manifold, transform.inv(zT), log_prob=base.log_prob)
logger.log_plot(f"xT_fwd", plt, step)
### Main
log.info("Stage : Startup")
log.info(f"Jax devices: {jax.devices()}")
run_path = os.getcwd()
log.info(f"run_path: {run_path}")
log.info(f"hostname: {socket.gethostname()}")
ckpt_path = os.path.join(run_path, cfg.ckpt_dir)
os.makedirs(ckpt_path, exist_ok=True)
loggers = [instantiate(logger_cfg) for logger_cfg in cfg.logger.values()]
logger = LoggerCollection(loggers)
logger.log_hyperparams(OmegaConf.to_container(cfg, resolve=True))
log.info("Stage : Instantiate model")
rng = jax.random.PRNGKey(cfg.seed)
data_manifold = instantiate(cfg.manifold)
transform = instantiate(cfg.transform, data_manifold)
model_manifold = transform.domain
beta_schedule = instantiate(cfg.beta_schedule)
flow = instantiate(cfg.flow, manifold=model_manifold, beta_schedule=beta_schedule)
base = instantiate(cfg.base, model_manifold, flow)
pushforward = instantiate(cfg.pushf, flow, base, transform=transform)
log.info("Stage : Instantiate dataset")
rng, next_rng = jax.random.split(rng)
dataset = instantiate(cfg.dataset, rng=next_rng)
if isinstance(dataset, TensorDataset):
# split and wrapp dataset into dataloaders
train_ds, eval_ds, test_ds = random_split(
dataset, lengths=cfg.splits, rng=next_rng
)
train_ds, eval_ds, test_ds = (
DataLoader(train_ds, batch_dims=cfg.batch_size, rng=next_rng, shuffle=True),
DataLoader(eval_ds, batch_dims=cfg.eval_batch_size, rng=next_rng),
DataLoader(test_ds, batch_dims=cfg.eval_batch_size, rng=next_rng),
)
log.info(
f"Train size: {len(train_ds.dataset)}. Val size: {len(eval_ds.dataset)}. Test size: {len(test_ds.dataset)}"
)
else:
train_ds, eval_ds, test_ds = dataset, dataset, dataset
log.info("Stage : Instantiate vector field model")
def model(y, t, context=None):
"""Vector field s_\theta: y, t, context -> T_y M"""
output_shape = get_class(cfg.generator._target_).output_shape(model_manifold)
score = instantiate(
cfg.generator,
cfg.architecture,
cfg.embedding,
output_shape,
manifold=model_manifold,
)
# TODO: parse context into embedding map
if context is not None:
t_expanded = jnp.expand_dims(t.reshape(-1), -1)
if context.shape[0] != y.shape[0]:
context = jnp.repeat(jnp.expand_dims(context, 0), y.shape[0], 0)
context = jnp.concatenate([t_expanded, context], axis=-1)
else:
context = t
return score(y, context)
model = hk.transform_with_state(model)
rng, next_rng = jax.random.split(rng)
t = jnp.zeros((cfg.batch_size, 1))
data, context = next(train_ds)
params, state = model.init(rng=next_rng, y=transform.inv(data), t=t, context=context)
log.info("Stage : Instantiate optimiser")
schedule_fn = instantiate(cfg.scheduler)
optimiser = optax.chain(instantiate(cfg.optim), optax.scale_by_schedule(schedule_fn))
opt_state = optimiser.init(params)
if cfg.resume or cfg.mode == "test": # if resume or evaluate
train_state = restore(ckpt_path)
else:
rng, next_rng = jax.random.split(rng)
train_state = TrainState(
opt_state=opt_state,
model_state=state,
step=0,
params=params,
ema_rate=cfg.ema_rate,
params_ema=params,
rng=next_rng, # TODO: we should actually use this for reproducibility
)
save(ckpt_path, train_state)
if cfg.mode == "train" or cfg.mode == "all":
# if train_state.step == 0 and cfg.test_test:
# evaluate(train_state, "test", step=cfg.steps)
if train_state.step == 0 and cfg.test_plot:
generate_plots(train_state, "test", step=-1)
log.info("Stage : Training")
train_state, success = train(train_state)
if cfg.mode == "test" or (cfg.mode == "all" and success):
log.info("Stage : Test")
if cfg.test_val:
evaluate(train_state, "val", step=cfg.steps)
if cfg.test_test:
evaluate(train_state, "test", step=cfg.steps)
if cfg.test_plot:
generate_plots(train_state, "test", step=cfg.steps)
success = True
logger.save()
logger.finalize("success" if success else "failure")