forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_param.py
74 lines (61 loc) · 2.72 KB
/
sample_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from federatedml.param.base_param import BaseParam
import collections
class SampleParam(BaseParam):
"""
Define the sample method
Parameters
----------
mode: {'random', 'stratified', 'exact_by_weight'}'
specify sample to use, default: 'random'
method: {'downsample', 'upsample'}, default: 'downsample'
specify sample method
fractions: None or float or list
if mode equals to random, it should be a float number greater than 0,
otherwise a list of elements of pairs like [label_i, sample_rate_i],
e.g. [[0, 0.5], [1, 0.8], [2, 0.3]]. default: None
random_state: int, RandomState instance or None, default: None
random state
need_run: bool, default True
Indicate if this module needed to be run
"""
def __init__(self, mode="random", method="downsample", fractions=None,
random_state=None, task_type="hetero", need_run=True):
self.mode = mode
self.method = method
self.fractions = fractions
self.random_state = random_state
self.task_type = task_type
self.need_run = need_run
def check(self):
descr = "sample param"
self.mode = self.check_and_change_lower(self.mode,
["random", "stratified", "exact_by_weight"],
descr)
self.method = self.check_and_change_lower(self.method,
["upsample", "downsample"],
descr)
if self.mode == "stratified" and self.fractions is not None:
if not isinstance(self.fractions, list):
raise ValueError("fractions of sample param when using stratified should be list")
for ele in self.fractions:
if not isinstance(ele, collections.Container) or len(ele) != 2:
raise ValueError(
"element in fractions of sample param using stratified should be a pair like [label_i, rate_i]")
return True