forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboosting_param.py
682 lines (580 loc) · 34.9 KB
/
boosting_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from federatedml.param.base_param import BaseParam, deprecated_param
from federatedml.param.encrypt_param import EncryptParam
from federatedml.param.encrypted_mode_calculation_param import EncryptedModeCalculatorParam
from federatedml.param.cross_validation_param import CrossValidationParam
from federatedml.param.predict_param import PredictParam
from federatedml.param.callback_param import CallbackParam
from federatedml.util import consts, LOGGER
import copy
import collections
hetero_deprecated_param_list = ["early_stopping_rounds", "validation_freqs", "metrics", "use_first_metric_only"]
homo_deprecated_param_list = ["validation_freqs", "metrics"]
class ObjectiveParam(BaseParam):
"""
Define objective parameters that used in federated ml.
Parameters
----------
objective : {None, 'cross_entropy', 'lse', 'lae', 'log_cosh', 'tweedie', 'fair', 'huber'}
None in host's config, should be str in guest'config.
when task_type is classification, only support 'cross_entropy',
other 6 types support in regression task
params : None or list
should be non empty list when objective is 'tweedie','fair','huber',
first element of list shoulf be a float-number large than 0.0 when objective is 'fair', 'huber',
first element of list should be a float-number in [1.0, 2.0) when objective is 'tweedie'
"""
def __init__(self, objective='cross_entropy', params=None):
self.objective = objective
self.params = params
def check(self, task_type=None):
if self.objective is None:
return True
descr = "objective param's"
LOGGER.debug('check objective {}'.format(self.objective))
if task_type not in [consts.CLASSIFICATION, consts.REGRESSION]:
self.objective = self.check_and_change_lower(self.objective,
["cross_entropy", "lse", "lae", "huber", "fair",
"log_cosh", "tweedie"],
descr)
if task_type == consts.CLASSIFICATION:
if self.objective != "cross_entropy":
raise ValueError("objective param's objective {} not supported".format(self.objective))
elif task_type == consts.REGRESSION:
self.objective = self.check_and_change_lower(self.objective,
["lse", "lae", "huber", "fair", "log_cosh", "tweedie"],
descr)
params = self.params
if self.objective in ["huber", "fair", "tweedie"]:
if type(params).__name__ != 'list' or len(params) < 1:
raise ValueError(
"objective param's params {} not supported, should be non-empty list".format(params))
if type(params[0]).__name__ not in ["float", "int", "long"]:
raise ValueError("objective param's params[0] {} not supported".format(self.params[0]))
if self.objective == 'tweedie':
if params[0] < 1 or params[0] >= 2:
raise ValueError("in tweedie regression, objective params[0] should betweend [1, 2)")
if self.objective == 'fair' or 'huber':
if params[0] <= 0.0:
raise ValueError("in {} regression, objective params[0] should greater than 0.0".format(
self.objective))
return True
class DecisionTreeParam(BaseParam):
"""
Define decision tree parameters that used in federated ml.
Parameters
----------
criterion_method : {"xgboost"}, default: "xgboost"
the criterion function to use
criterion_params: list or dict
should be non empty and elements are float-numbers,
if a list is offered, the first one is l2 regularization value, and the second one is
l1 regularization value.
if a dict is offered, make sure it contains key 'l1', and 'l2'.
l1, l2 regularization values are non-negative floats.
default: [0.1, 0] or {'l1':0, 'l2':0,1}
max_depth: positive integer
the max depth of a decision tree, default: 3
min_sample_split: int
least quantity of nodes to split, default: 2
min_impurity_split: float
least gain of a single split need to reach, default: 1e-3
min_child_weight: float
sum of hessian needed in child nodes. default is 0
min_leaf_node: int
when samples no more than min_leaf_node, it becomes a leave, default: 1
max_split_nodes: positive integer
we will use no more than max_split_nodes to
parallel finding their splits in a batch, for memory consideration. default is 65536
feature_importance_type: {'split', 'gain'}
if is 'split', feature_importances calculate by feature split times,
if is 'gain', feature_importances calculate by feature split gain.
default: 'split'
Due to the safety concern, we adjust training strategy of Hetero-SBT in FATE-1.8,
When running Hetero-SBT, this parameter is now abandoned.
In Hetero-SBT of FATE-1.8, guest side will compute split, gain of local features,
and receive anonymous feature importance results from hosts. Hosts will compute split
importance of local features.
use_missing: bool, accepted True, False only, default: False
use missing value in training process or not.
zero_as_missing: bool
regard 0 as missing value or not,
will be use only if use_missing=True, default: False
deterministic: bool
ensure stability when computing histogram. Set this to true to ensure stable result when using
same data and same parameter. But it may slow down computation.
"""
def __init__(self, criterion_method="xgboost", criterion_params=[0.1, 0], max_depth=3,
min_sample_split=2, min_impurity_split=1e-3, min_leaf_node=1,
max_split_nodes=consts.MAX_SPLIT_NODES, feature_importance_type='split',
n_iter_no_change=True, tol=0.001, min_child_weight=0,
use_missing=False, zero_as_missing=False, deterministic=False):
super(DecisionTreeParam, self).__init__()
self.criterion_method = criterion_method
self.criterion_params = criterion_params
self.max_depth = max_depth
self.min_sample_split = min_sample_split
self.min_impurity_split = min_impurity_split
self.min_leaf_node = min_leaf_node
self.min_child_weight = min_child_weight
self.max_split_nodes = max_split_nodes
self.feature_importance_type = feature_importance_type
self.n_iter_no_change = n_iter_no_change
self.tol = tol
self.use_missing = use_missing
self.zero_as_missing = zero_as_missing
self.deterministic = deterministic
def check(self):
descr = "decision tree param"
self.criterion_method = self.check_and_change_lower(self.criterion_method,
["xgboost"],
descr)
if len(self.criterion_params) == 0:
raise ValueError("decisition tree param's criterio_params should be non empty")
if isinstance(self.criterion_params, list):
assert len(self.criterion_params) == 2, 'length of criterion_param should be 2: l1, l2 regularization ' \
'values are needed'
self.check_nonnegative_number(self.criterion_params[0], 'l2 reg value')
self.check_nonnegative_number(self.criterion_params[1], 'l1 reg value')
elif isinstance(self.criterion_params, dict):
assert 'l1' in self.criterion_params and 'l2' in self.criterion_params, 'l1 and l2 keys are needed in ' \
'criterion_params dict'
self.criterion_params = [self.criterion_params['l2'], self.criterion_params['l1']]
else:
raise ValueError('criterion_params should be a dict or a list contains l1, l2 reg value')
if type(self.max_depth).__name__ not in ["int", "long"]:
raise ValueError("decision tree param's max_depth {} not supported, should be integer".format(
self.max_depth))
if self.max_depth < 1:
raise ValueError("decision tree param's max_depth should be positive integer, no less than 1")
if type(self.min_sample_split).__name__ not in ["int", "long"]:
raise ValueError("decision tree param's min_sample_split {} not supported, should be integer".format(
self.min_sample_split))
if type(self.min_impurity_split).__name__ not in ["int", "long", "float"]:
raise ValueError("decision tree param's min_impurity_split {} not supported, should be numeric".format(
self.min_impurity_split))
if type(self.min_leaf_node).__name__ not in ["int", "long"]:
raise ValueError("decision tree param's min_leaf_node {} not supported, should be integer".format(
self.min_leaf_node))
if type(self.max_split_nodes).__name__ not in ["int", "long"] or self.max_split_nodes < 1:
raise ValueError("decision tree param's max_split_nodes {} not supported, " +
"should be positive integer between 1 and {}".format(self.max_split_nodes,
consts.MAX_SPLIT_NODES))
if type(self.n_iter_no_change).__name__ != "bool":
raise ValueError("decision tree param's n_iter_no_change {} not supported, should be bool type".format(
self.n_iter_no_change))
if type(self.tol).__name__ not in ["float", "int", "long"]:
raise ValueError("decision tree param's tol {} not supported, should be numeric".format(self.tol))
self.feature_importance_type = self.check_and_change_lower(self.feature_importance_type,
["split", "gain"],
descr)
self.check_nonnegative_number(self.min_child_weight, 'min_child_weight')
self.check_boolean(self.deterministic, 'deterministic')
return True
class BoostingParam(BaseParam):
"""
Basic parameter for Boosting Algorithms
Parameters
----------
task_type : {'classification', 'regression'}, default: 'classification'
task type
objective_param : ObjectiveParam Object, default: ObjectiveParam()
objective param
learning_rate : float, int or long
the learning rate of secure boost. default: 0.3
num_trees : int or float
the max number of boosting round. default: 5
subsample_feature_rate : float
a float-number in [0, 1], default: 1.0
n_iter_no_change : bool,
when True and residual error less than tol, tree building process will stop. default: True
bin_num: positive integer greater than 1
bin number use in quantile. default: 32
validation_freqs: None or positive integer or container object in python
Do validation in training process or Not.
if equals None, will not do validation in train process;
if equals positive integer, will validate data every validation_freqs epochs passes;
if container object in python, will validate data if epochs belong to this container.
e.g. validation_freqs = [10, 15], will validate data when epoch equals to 10 and 15.
Default: None
"""
def __init__(self, task_type=consts.CLASSIFICATION,
objective_param=ObjectiveParam(),
learning_rate=0.3, num_trees=5, subsample_feature_rate=1, n_iter_no_change=True,
tol=0.0001, bin_num=32,
predict_param=PredictParam(), cv_param=CrossValidationParam(),
validation_freqs=None, metrics=None, random_seed=100,
binning_error=consts.DEFAULT_RELATIVE_ERROR):
super(BoostingParam, self).__init__()
self.task_type = task_type
self.objective_param = copy.deepcopy(objective_param)
self.learning_rate = learning_rate
self.num_trees = num_trees
self.subsample_feature_rate = subsample_feature_rate
self.n_iter_no_change = n_iter_no_change
self.tol = tol
self.bin_num = bin_num
self.predict_param = copy.deepcopy(predict_param)
self.cv_param = copy.deepcopy(cv_param)
self.validation_freqs = validation_freqs
self.metrics = metrics
self.random_seed = random_seed
self.binning_error = binning_error
def check(self):
descr = "boosting tree param's"
if self.task_type not in [consts.CLASSIFICATION, consts.REGRESSION]:
raise ValueError("boosting_core tree param's task_type {} not supported, should be {} or {}".format(
self.task_type, consts.CLASSIFICATION, consts.REGRESSION))
self.objective_param.check(self.task_type)
if type(self.learning_rate).__name__ not in ["float", "int", "long"]:
raise ValueError("boosting_core tree param's learning_rate {} not supported, should be numeric".format(
self.learning_rate))
if type(self.subsample_feature_rate).__name__ not in ["float", "int", "long"] or \
self.subsample_feature_rate < 0 or self.subsample_feature_rate > 1:
raise ValueError(
"boosting_core tree param's subsample_feature_rate should be a numeric number between 0 and 1")
if type(self.n_iter_no_change).__name__ != "bool":
raise ValueError("boosting_core tree param's n_iter_no_change {} not supported, should be bool type".format(
self.n_iter_no_change))
if type(self.tol).__name__ not in ["float", "int", "long"]:
raise ValueError("boosting_core tree param's tol {} not supported, should be numeric".format(self.tol))
if type(self.bin_num).__name__ not in ["int", "long"] or self.bin_num < 2:
raise ValueError(
"boosting_core tree param's bin_num {} not supported, should be positive integer greater than 1".format(
self.bin_num))
if self.validation_freqs is None:
pass
elif isinstance(self.validation_freqs, int):
if self.validation_freqs < 1:
raise ValueError("validation_freqs should be larger than 0 when it's integer")
elif not isinstance(self.validation_freqs, collections.Container):
raise ValueError("validation_freqs should be None or positive integer or container")
if self.metrics is not None and not isinstance(self.metrics, list):
raise ValueError("metrics should be a list")
if self.random_seed is not None:
assert isinstance(self.random_seed, int) and self.random_seed >= 0, 'random seed must be an integer >= 0'
self.check_decimal_float(self.binning_error, descr)
return True
class HeteroBoostingParam(BoostingParam):
"""
Parameters
----------
encrypt_param : EncodeParam Object
encrypt method use in secure boost, default: EncryptParam()
encrypted_mode_calculator_param: EncryptedModeCalculatorParam object
the calculation mode use in secureboost,
default: EncryptedModeCalculatorParam()
"""
def __init__(self, task_type=consts.CLASSIFICATION,
objective_param=ObjectiveParam(),
learning_rate=0.3, num_trees=5, subsample_feature_rate=1, n_iter_no_change=True,
tol=0.0001, encrypt_param=EncryptParam(),
bin_num=32,
encrypted_mode_calculator_param=EncryptedModeCalculatorParam(),
predict_param=PredictParam(), cv_param=CrossValidationParam(),
validation_freqs=None, early_stopping_rounds=None, metrics=None, use_first_metric_only=False,
random_seed=100, binning_error=consts.DEFAULT_RELATIVE_ERROR):
super(HeteroBoostingParam, self).__init__(task_type, objective_param, learning_rate, num_trees,
subsample_feature_rate, n_iter_no_change, tol, bin_num,
predict_param, cv_param, validation_freqs, metrics=metrics,
random_seed=random_seed,
binning_error=binning_error)
self.encrypt_param = copy.deepcopy(encrypt_param)
self.encrypted_mode_calculator_param = copy.deepcopy(encrypted_mode_calculator_param)
self.early_stopping_rounds = early_stopping_rounds
self.use_first_metric_only = use_first_metric_only
def check(self):
super(HeteroBoostingParam, self).check()
self.encrypted_mode_calculator_param.check()
self.encrypt_param.check()
if self.early_stopping_rounds is None:
pass
elif isinstance(self.early_stopping_rounds, int):
if self.early_stopping_rounds < 1:
raise ValueError("early stopping rounds should be larger than 0 when it's integer")
if self.validation_freqs is None:
raise ValueError("validation freqs must be set when early stopping is enabled")
if not isinstance(self.use_first_metric_only, bool):
raise ValueError("use_first_metric_only should be a boolean")
return True
@deprecated_param(*hetero_deprecated_param_list)
class HeteroSecureBoostParam(HeteroBoostingParam):
"""
Define boosting tree parameters that used in federated ml.
Parameters
----------
task_type : {'classification', 'regression'}, default: 'classification'
task type
tree_param : DecisionTreeParam Object, default: DecisionTreeParam()
tree param
objective_param : ObjectiveParam Object, default: ObjectiveParam()
objective param
learning_rate : float, int or long
the learning rate of secure boost. default: 0.3
num_trees : int or float
the max number of trees to build. default: 5
subsample_feature_rate : float
a float-number in [0, 1], default: 1.0
random_seed: int
seed that controls all random functions
n_iter_no_change : bool,
when True and residual error less than tol, tree building process will stop. default: True
encrypt_param : EncodeParam Object
encrypt method use in secure boost, default: EncryptParam(), this parameter
is only for hetero-secureboost
bin_num: positive integer greater than 1
bin number use in quantile. default: 32
encrypted_mode_calculator_param: EncryptedModeCalculatorParam object
the calculation mode use in secureboost, default: EncryptedModeCalculatorParam(), only for hetero-secureboost
use_missing: bool
use missing value in training process or not. default: False
zero_as_missing: bool
regard 0 as missing value or not, will be use only if use_missing=True, default: False
validation_freqs: None or positive integer or container object in python
Do validation in training process or Not.
if equals None, will not do validation in train process;
if equals positive integer, will validate data every validation_freqs epochs passes;
if container object in python, will validate data if epochs belong to this container.
e.g. validation_freqs = [10, 15], will validate data when epoch equals to 10 and 15.
Default: None
The default value is None, 1 is suggested. You can set it to a number larger than 1 in order to
speed up training by skipping validation rounds. When it is larger than 1, a number which is
divisible by "num_trees" is recommended, otherwise, you will miss the validation scores
of last training iteration.
early_stopping_rounds: integer larger than 0
will stop training if one metric of one validation data
doesn’t improve in last early_stopping_round rounds,
need to set validation freqs and will check early_stopping every at every validation epoch,
metrics: list, default: []
Specify which metrics to be used when performing evaluation during training process.
If set as empty, default metrics will be used. For regression tasks, default metrics are
['root_mean_squared_error', 'mean_absolute_error'], For binary-classificatiin tasks, default metrics
are ['auc', 'ks']. For multi-classification tasks, default metrics are ['accuracy', 'precision', 'recall']
use_first_metric_only: bool
use only the first metric for early stopping
complete_secure: bool
if use complete_secure, when use complete secure, build first tree using only guest features
sparse_optimization:
this parameter is abandoned in FATE-1.7.1
run_goss: bool
activate Gradient-based One-Side Sampling, which selects large gradient and small
gradient samples using top_rate and other_rate.
top_rate: float, the retain ratio of large gradient data, used when run_goss is True
other_rate: float, the retain ratio of small gradient data, used when run_goss is True
cipher_compress_error: This param is now abandoned
cipher_compress: bool, default is True, use cipher compressing to reduce computation cost and transfer cost
boosting_strategy:str
std: standard sbt setting
mix: alternate using guest/host features to build trees. For example, the first 'tree_num_per_party' trees
use guest features,
the second k trees use host features, and so on
layered: only support 2 party, when running layered mode, first 'host_depth' layer will use host features,
and then next 'guest_depth' will only use guest features
work_mode: str
This parameter has the same function as boosting_strategy, but is deprecated
tree_num_per_party: int, every party will alternate build 'tree_num_per_party' trees until reach max tree num, this
param is valid when boosting_strategy is mix
guest_depth: int, guest will build last guest_depth of a decision tree using guest features, is valid when boosting_strategy
is layered
host_depth: int, host will build first host_depth of a decision tree using host features, is valid when work boosting_strategy
layered
multi_mode: str, decide which mode to use when running multi-classification task:
single_output standard gbdt multi-classification strategy
multi_output every leaf give a multi-dimension predict, using multi_mode can save time
by learning a model with less trees.
EINI_inference: bool
default is False, this option changes the inference algorithm used in predict tasks.
a secure prediction method that hides decision path to enhance security in the inference
step. This method is insprired by EINI inference algorithm.
EINI_random_mask: bool
default is False
multiply predict result by a random float number to confuse original predict result. This operation further
enhances the security of naive EINI algorithm.
EINI_complexity_check: bool
default is False
check the complexity of tree models when running EINI algorithms. Complexity models are easy to hide their
decision path, while simple tree models are not, therefore if a tree model is too simple, it is not allowed
to run EINI predict algorithms.
"""
def __init__(self, tree_param: DecisionTreeParam = DecisionTreeParam(), task_type=consts.CLASSIFICATION,
objective_param=ObjectiveParam(),
learning_rate=0.3, num_trees=5, subsample_feature_rate=1.0, n_iter_no_change=True,
tol=0.0001, encrypt_param=EncryptParam(),
bin_num=32,
encrypted_mode_calculator_param=EncryptedModeCalculatorParam(),
predict_param=PredictParam(), cv_param=CrossValidationParam(),
validation_freqs=None, early_stopping_rounds=None, use_missing=False, zero_as_missing=False,
complete_secure=False, metrics=None, use_first_metric_only=False, random_seed=100,
binning_error=consts.DEFAULT_RELATIVE_ERROR,
sparse_optimization=False, run_goss=False, top_rate=0.2, other_rate=0.1,
cipher_compress_error=None, cipher_compress=True, new_ver=True, boosting_strategy=consts.STD_TREE,
work_mode=None, tree_num_per_party=1, guest_depth=2, host_depth=3, callback_param=CallbackParam(),
multi_mode=consts.SINGLE_OUTPUT, EINI_inference=False, EINI_random_mask=False,
EINI_complexity_check=False):
super(HeteroSecureBoostParam, self).__init__(task_type, objective_param, learning_rate, num_trees,
subsample_feature_rate, n_iter_no_change, tol, encrypt_param,
bin_num, encrypted_mode_calculator_param, predict_param, cv_param,
validation_freqs, early_stopping_rounds, metrics=metrics,
use_first_metric_only=use_first_metric_only,
random_seed=random_seed,
binning_error=binning_error)
self.tree_param = copy.deepcopy(tree_param)
self.zero_as_missing = zero_as_missing
self.use_missing = use_missing
self.complete_secure = complete_secure
self.sparse_optimization = sparse_optimization
self.run_goss = run_goss
self.top_rate = top_rate
self.other_rate = other_rate
self.cipher_compress_error = cipher_compress_error
self.cipher_compress = cipher_compress
self.new_ver = new_ver
self.EINI_inference = EINI_inference
self.EINI_random_mask = EINI_random_mask
self.EINI_complexity_check = EINI_complexity_check
self.boosting_strategy = boosting_strategy
self.work_mode = work_mode
self.tree_num_per_party = tree_num_per_party
self.guest_depth = guest_depth
self.host_depth = host_depth
self.callback_param = copy.deepcopy(callback_param)
self.multi_mode = multi_mode
def check(self):
super(HeteroSecureBoostParam, self).check()
self.tree_param.check()
if not isinstance(self.use_missing, bool):
raise ValueError('use missing should be bool type')
if not isinstance(self.zero_as_missing, bool):
raise ValueError('zero as missing should be bool type')
self.check_boolean(self.complete_secure, 'complete_secure')
self.check_boolean(self.run_goss, 'run goss')
self.check_decimal_float(self.top_rate, 'top rate')
self.check_decimal_float(self.other_rate, 'other rate')
self.check_positive_number(self.other_rate, 'other_rate')
self.check_positive_number(self.top_rate, 'top_rate')
self.check_boolean(self.new_ver, 'code version switcher')
self.check_boolean(self.cipher_compress, 'cipher compress')
self.check_boolean(self.EINI_inference, 'eini inference')
self.check_boolean(self.EINI_random_mask, 'eini random mask')
self.check_boolean(self.EINI_complexity_check, 'eini complexity check')
if self.EINI_inference and self.EINI_random_mask:
LOGGER.warning('To protect the inference decision path, notice that current setting will multiply'
' predict result by a random number, hence SecureBoost will return confused predict scores'
' that is not the same as the original predict scores')
if self.work_mode == consts.MIX_TREE and self.EINI_inference:
LOGGER.warning('Mix tree mode does not support EINI, use default predict setting')
if self.work_mode is not None:
self.boosting_strategy = self.work_mode
if self.multi_mode not in [consts.SINGLE_OUTPUT, consts.MULTI_OUTPUT]:
raise ValueError('unsupported multi-classification mode')
if self.multi_mode == consts.MULTI_OUTPUT:
if self.boosting_strategy != consts.STD_TREE:
raise ValueError('MO trees only works when boosting strategy is std tree')
if not self.cipher_compress:
raise ValueError('Mo trees only works when cipher compress is enabled')
if self.boosting_strategy not in [consts.STD_TREE, consts.LAYERED_TREE, consts.MIX_TREE]:
raise ValueError('unknown sbt boosting strategy{}'.format(self.boosting_strategy))
for p in ["early_stopping_rounds", "validation_freqs", "metrics",
"use_first_metric_only"]:
# if self._warn_to_deprecate_param(p, "", ""):
if self._deprecated_params_set.get(p):
if "callback_param" in self.get_user_feeded():
raise ValueError(f"{p} and callback param should not be set simultaneously,"
f"{self._deprecated_params_set}, {self.get_user_feeded()}")
else:
self.callback_param.callbacks = ["PerformanceEvaluate"]
break
descr = "boosting_param's"
if self._warn_to_deprecate_param("validation_freqs", descr, "callback_param's 'validation_freqs'"):
self.callback_param.validation_freqs = self.validation_freqs
if self._warn_to_deprecate_param("early_stopping_rounds", descr, "callback_param's 'early_stopping_rounds'"):
self.callback_param.early_stopping_rounds = self.early_stopping_rounds
if self._warn_to_deprecate_param("metrics", descr, "callback_param's 'metrics'"):
self.callback_param.metrics = self.metrics
if self._warn_to_deprecate_param("use_first_metric_only", descr, "callback_param's 'use_first_metric_only'"):
self.callback_param.use_first_metric_only = self.use_first_metric_only
if self.top_rate + self.other_rate >= 1:
raise ValueError('sum of top rate and other rate should be smaller than 1')
return True
@deprecated_param(*homo_deprecated_param_list)
class HomoSecureBoostParam(BoostingParam):
"""
Parameters
----------
backend: {'distributed', 'memory'}
decides which backend to use when computing histograms for homo-sbt
"""
def __init__(self, tree_param: DecisionTreeParam = DecisionTreeParam(), task_type=consts.CLASSIFICATION,
objective_param=ObjectiveParam(),
learning_rate=0.3, num_trees=5, subsample_feature_rate=1, n_iter_no_change=True,
tol=0.0001, bin_num=32, predict_param=PredictParam(), cv_param=CrossValidationParam(),
validation_freqs=None, use_missing=False, zero_as_missing=False, random_seed=100,
binning_error=consts.DEFAULT_RELATIVE_ERROR, backend=consts.DISTRIBUTED_BACKEND,
callback_param=CallbackParam(), multi_mode=consts.SINGLE_OUTPUT):
super(HomoSecureBoostParam, self).__init__(task_type=task_type,
objective_param=objective_param,
learning_rate=learning_rate,
num_trees=num_trees,
subsample_feature_rate=subsample_feature_rate,
n_iter_no_change=n_iter_no_change,
tol=tol,
bin_num=bin_num,
predict_param=predict_param,
cv_param=cv_param,
validation_freqs=validation_freqs,
random_seed=random_seed,
binning_error=binning_error
)
self.use_missing = use_missing
self.zero_as_missing = zero_as_missing
self.tree_param = copy.deepcopy(tree_param)
self.backend = backend
self.callback_param = copy.deepcopy(callback_param)
self.multi_mode = multi_mode
def check(self):
super(HomoSecureBoostParam, self).check()
self.tree_param.check()
if not isinstance(self.use_missing, bool):
raise ValueError('use missing should be bool type')
if not isinstance(self.zero_as_missing, bool):
raise ValueError('zero as missing should be bool type')
if self.backend not in [consts.MEMORY_BACKEND, consts.DISTRIBUTED_BACKEND]:
raise ValueError('unsupported backend')
if self.multi_mode not in [consts.SINGLE_OUTPUT, consts.MULTI_OUTPUT]:
raise ValueError('unsupported multi-classification mode')
for p in ["validation_freqs", "metrics"]:
# if self._warn_to_deprecate_param(p, "", ""):
if self._deprecated_params_set.get(p):
if "callback_param" in self.get_user_feeded():
raise ValueError(f"{p} and callback param should not be set simultaneously,"
f"{self._deprecated_params_set}, {self.get_user_feeded()}")
else:
self.callback_param.callbacks = ["PerformanceEvaluate"]
break
descr = "boosting_param's"
if self._warn_to_deprecate_param("validation_freqs", descr, "callback_param's 'validation_freqs'"):
self.callback_param.validation_freqs = self.validation_freqs
if self._warn_to_deprecate_param("metrics", descr, "callback_param's 'metrics'"):
self.callback_param.metrics = self.metrics
if self.multi_mode not in [consts.SINGLE_OUTPUT, consts.MULTI_OUTPUT]:
raise ValueError('unsupported multi-classification mode')
if self.multi_mode == consts.MULTI_OUTPUT:
if self.task_type == consts.REGRESSION:
raise ValueError('regression tasks not support multi-output trees')
return True