Skip to content

Latest commit

 

History

History
423 lines (340 loc) · 9.91 KB

603-1189940-灰度图的矩形选区复制与粘贴.sy.md

File metadata and controls

423 lines (340 loc) · 9.91 KB
show version enable_checker
step
1.0
true

opencv

回忆

  • 上次研究了 numpy.ndarray的
    • 索引和切片
  • 基础索引和切片
    • 和 列表一致
  • 多维索引和切片
    • 在大括号中实现
    • 不同维度 通过逗号划分

创建纯0黑色图

import numpy as np        
import cv2             
array = np.zeros((50,50),np.uint8)
print(array)           
cv2.imshow("image",array)
cv2.waitKey()          
cv2.destroyAllWindows()
  • 结果
    • 确实是50 * 50的纯黑图

图片描述

  • 可以创建非纯0的图吗?

创建纯1图

import numpy as np        
import cv2             
array = np.ones((50,50),np.uint8)
print(array)           
cv2.imshow("image",array)
cv2.waitKey()          
cv2.destroyAllWindows()
  • 结果
    • 看起来还是纯黑
    • 但是具体数值为1

图片描述

  • 可以创建纯白的图吗?

创建白色图

import numpy as np
import cv2         
array = np.ones((200,100),np.uint8)
array[:,:] = 255                                                            
print(array)       
cv2.imshow("image",array)
cv2.waitKey()   
cv2.destroyAllWindows()
  • 纯白的颜色是255

图片描述

  • 可以黑中带白吗?

黑色图像中创建白色矩形

import cv2
import numpy as np
width = 400
height = 300
img = np.zeros((height, width), np.uint8)
img[100:200,250:300] = 255 #纵坐标范围100,200,横坐标范围250,300
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
  • 绘画结果

图片描述

  • 分析

图片描述

  • 可以反过来吗?
    • 在 白色画布上绘制黑色

黑白条纹

import cv2
import numpy as np
width = 400
height = 300
img = np.zeros ((height, width), np.uint8)
for i in range(0,width,40):
    img[ : , i:(i + 20)] = 255# 纵坐标缺省就是从顶到底
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
  • 结果

图片描述

  • 看起来似乎可以做个钢琴卷帘
  • 图像的像素矩阵可以复制吗?

设置像素点的颜色

  • 使用索引
    • 控制像素点的颜色
import cv2       
image = cv2.imread("/home/shiyanlou/gear.jpg",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)
height, width = image.shape
print(image)     
image[6,25] = 0  
cv2.imshow("black pixel",image)
image[6,25] = 255
cv2.imshow("white pixel",image)
key = cv2.waitKey()
if key & 0xFF == ord("q"):
    cv2.destroyAllWindows()
  • 注意观察
    • (y=6,x=25)点处的颜色

图片描述

  • 可以使用矩阵批量设置颜色吗?

设置矩阵范围内的颜色

import cv2     
image = cv2.imread("/home/shiyanlou/gear.jpg",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)
height, width = image.shape
print(height, width)
print(image)   
image[38:75,184:231] = 0
cv2.imshow("black rectangle",image)
image[38:75,184:231] = 128
cv2.imshow("gray rectangle",image)
image[38:75,184:231] = 255
cv2.imshow("white rectangle",image)
key = cv2.waitKey()
if key & 0xFF == ord("q"):
    cv2.destroyAllWindows()
  • 在矩阵范围内的像素
    • 统一被设置为一个具体颜色

图片描述

  • 如果忽略起点或者终点会如何呢?

忽略起点或者终点

import cv2              
image = cv2.imread("/home/shiyanlou/gear.jpg",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)
height, width = image.shape
print(height, width)
print(image)            
image[:,184:231] = 255  
cv2.imshow("omit x",image)
image[38:75,:] = 255    
cv2.imshow("omit y",image)
image[:,:] = 255        
cv2.imshow("omit x and y",image)
key = cv2.waitKey()     
if key & 0xFF == ord("q"):
    cv2.destroyAllWindows()
  • 结果

图片描述

忽略x坐标的最大值

import cv2             
image = cv2.imread("/home/shiyanlou/gear.jpg",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)
height, width = image.shape
print(height, width)
print(image)           
image[38:204,300:] = 255
cv2.imshow("omit x max",image)
key = cv2.waitKey()    
if key & 0xFF == ord("q"):
    cv2.destroyAllWindows()
  • 结果
    • x相当于从300到最大

图片描述

  • 忽略y的最小值又会如何呢?

忽略y坐标的最小值

import cv2
image = cv2.imread("/home/shiyanlou/gear.jpg",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)
height, width = image.shape
print(height, width)
print(image)
image[:80,150:300] = 255
cv2.imshow("omit y min",image)
key = cv2.waitKey()
if key & 0xFF == ord("q"):
    cv2.destroyAllWindows()
  • 结果
    • y相当于从0到80

图片描述

复制像素矩阵

图片描述

  • gear.jpg
    • 应该已经存在于/home/shiyanlou

复制图片一部分像素

import cv2 
import numpy as np         
image = cv2.imread("/home/shiyanlou/gear.jpg",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)
height, width = image.shape
print(height, width)
print(image)
y2 = 120
y1 = 84
x2 = 260
x1 = 180
width = x2 - x1
height = y2 - y1
img_dest = np.zeros((height, width), np.uint8)
img_dest[:,:] = image[y1:y2,x1:x2]
cv2.imshow("copy rectangle selection",img_dest )
cv2.imwrite("new_image.jpg",img_dest)
key = cv2.waitKey()
if key & 0xFF == ord("q"):
    cv2.destroyAllWindows()
  • 结果

图片描述

矩形选区的复制于粘贴

import cv2
image = cv2.imread("/home/shiyanlou/gear.jpg",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)        
height, width = image.shape   
print(height, width)      
print(image)                        
y2 = 187                            
y1 = 84                             
x2 = 300                            
x1 = 150 
image[0:(y2-y1),0:(x2-x1)] = image[y1:y2,x1:x2]
cv2.imshow("copy rectangle selection",image)
key = cv2.waitKey()                 
if key & 0xFF == ord("q"):          
    cv2.destroyAllWindows()
  • 完成复制矩阵区域像素

图片描述

图像的复制

import cv2
image = cv2.imread("/home/shiyanlou/gear.jpg",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)
height, width = image.shape
print(height, width)
print(image)
y2 = 120
y1 = 84
x2 = 260
x1 = 180
for y_num in range(2):
    for x_num in range(3):
        print(y_num,x_num)
        print((y_num+1)*(y2-y1))
        print((x_num+1)*(x2-x1))
        image[y_num * (y2-y1):(y_num+1)*(y2-y1),x_num*(x2-x1):(x_num+1)*(x2-x1)] = image[y1:y2,x1:x2]
cv2.imshow("copy rectangle selection",image)
key = cv2.waitKey()
if key & 0xFF == ord("q"):
    cv2.destroyAllWindows()
  • 复制了一个2 * 3矩阵的像素内容

图片描述

  • 我可以把合成图拆成一帧帧的图像吗?

图像

图片描述

  • 上图horse.png应该在~

图片描述

  • 如果没有可以刷新蓝桥环境

图像切分

  • 将4 * 4 的跑马图
    • 都变成同一张的图像
import cv2         
image = cv2.imread("/home/shiyanlou/horse.png",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)
height, width = image.shape
print(height, width)
y2 = int(height / 4)
y1 = 0             
x2 = int(width / 4)
x1 = 0             
for y_num in range(4):
    for x_num in range(4):
        print(y_num,x_num)
        print((y_num+1)*(y2-y1))
        print((x_num+1)*(x2-x1))
        image[y_num * (y2-y1):(y_num+1)*(y2-y1),x_num*(x2-x1):(x_num+1)*(x2-x1)] = image[y1:y2,x1:x2]
cv2.imshow("copy rectangle selection",image)
key = cv2.waitKey()
if key & 0xFF == ord("q"):
    cv2.destroyAllWindows()
  • 结果

图片描述

  • 能否把这些图像像素复制到新图像上呢?

制作图片序列或者九宫格

import cv2                 
import numpy as np         
image = cv2.imread("/home/shiyanlou/horse.png",cv2.IMREAD_GRAYSCALE)
cv2.imshow("original",image)
height, width = image.shape
print(height, width)
y2 = int(height / 4)       
y1 = 0                     
x2 = int(width / 4)        
x1 = 0                     
for y_num in range(4):     
    for x_num in range(4): 
        print(y_num,x_num) 
        print((y_num+1)*(y2-y1))
        print((x_num+1)*(x2-x1))
        num = y_num * 4 + x_num
        new_image = np.zeros((y2-y1,x2-x1),np.uint8)
        new_image[:] = image[y_num * (y2-y1):(y_num+1)*(y2-y1),x_num*(x2-x1):(x_num+1)*(x2-x1)]
        new_image_name = "horse_" + str(num) + ".jpg"
        cv2.imwrite(new_image_name,new_image)
key = cv2.waitKey()        
if key & 0xFF == ord("q"): 
    cv2.destroyAllWindows()
  • 进入Code文件夹运行文件

图片描述

  • 成功完成图片切分
  • 总结一下吧

总结

  • 这次了解了基础图像的构成
    • 黑底
    • 白底
    • 黑底白块
    • 白底黑块等
  • 可以复制图像中的一部分像素矩阵
  • 也可以将图像按照某种方式切开
    • 就像切分九宫格那样

图片描述

  • 不过目前玩的都是灰度色彩模式
  • 能否操作彩色图呢?
  • 我们下次再说 👋