-
Notifications
You must be signed in to change notification settings - Fork 3
/
modelling_mistral_vib.py
1764 lines (1504 loc) · 72.8 KB
/
modelling_mistral_vib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Mistral model.
Modified in TVA_prune to incorporate VIB-based masks to prune weights
"""
import inspect
import math
import time
import warnings
from typing import List, Optional, Tuple, Union
import gc
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from utils.cache_utils import Cache, DynamicCache
from utils.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel,prune_linear_layer
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
#is_flash_attn_2_available,
#is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from transformers.models.mistral.configuration_mistral import MistralConfig
from vib_layer_lay import InformationBottleneck
# if is_flash_attn_2_available():
# from flash_attn import flash_attn_func, flash_attn_varlen_func
# from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
# _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MistralConfig"
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
# def _get_unpad_data(attention_mask):
# seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
# indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
# max_seqlen_in_batch = seqlens_in_batch.max().item()
# cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
# return (
# indices,
# cu_seqlens,
# max_seqlen_in_batch,
# )
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
class MistralRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
MistralRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states,hidden_z=None): #adapted from llama-vib
input_dtype = hidden_states.dtype
if hidden_z is not None:
remaining_index = torch.where(~hidden_z.eq(0))[0]
compressed_hidden_states = torch.index_select( hidden_states, dim=-1, index=remaining_index)
compressed_weight = self.weight[remaining_index]
normalized_shape = len(remaining_index)
variance = compressed_hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
compressed_hidden_states = compressed_hidden_states * torch.rsqrt(variance + self.variance_epsilon)
if compressed_weight.dtype in [torch.float16, torch.bfloat16]:
compressed_hidden_states = compressed_hidden_states.to(compressed_weight.dtype)
normed_states= compressed_weight * compressed_hidden_states
output = hidden_states.clone()
output[:, :, remaining_index] = normed_states
return output
else:
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states.to(input_dtype)
# copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
# TODO @Arthur no longer copied from LLama after static cache
class MistralRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq) #freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
#del q,k, cos, sin, position_ids
return q_embed, k_embed
class MistralMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
kl_mult= self.intermediate_size//self.hidden_size
if config.vib_layers==True:
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.ib_1= InformationBottleneck(self.intermediate_size,kl_mult=config.inter_mul)
else:
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def get_num_rem_weights(self,hidden_mask_size):
mask_1 = self.ib_1.get_mask_hard()
num_states_rem_1 = torch.sum((mask_1 == 1).int())
rem= ((2*num_states_rem_1 * hidden_mask_size) + (hidden_mask_size * num_states_rem_1)) #no bias
return rem
def get_sparsity(self,hidden_mask_sparse):
att_sp= (3*(self.ib_1.sparse/1e3) * (hidden_mask_sparse/1e3))
return att_sp
def get_kld_loss(self,hidden_mask,kl_fac):
kl=((self.ib_1.kld*kl_fac) + (hidden_mask.kld*kl_fac))
return kl
def forward(self, x,hidden_mask):
intermed_result = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
bsz,seq,dim = intermed_result.size()
if self.config.vib_layers==True:
intermed_result= intermed_result.reshape(bsz*seq,dim)
intermed_result = self.ib_1(intermed_result).to(intermed_result.dtype)
intermed_result= intermed_result.reshape(bsz,seq,dim)
intermed_result=self.down_proj(intermed_result)
dim =intermed_result.size(2)
if self.config.vib_layers==True: #only during finetuning
intermed_result= intermed_result.reshape(bsz*seq,dim)
intermed_result = hidden_mask(intermed_result).to(intermed_result.dtype)
intermed_result= intermed_result.reshape(bsz,seq,dim)
return intermed_result
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class MistralAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads if self.config.vib_layers == True else 128 #for 7b model
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
if self.config.vib_layers == True:
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
#self.ib_1= InformationBottleneck(self.num_heads,kl_mult=self.head_dim)
self.ib_1= InformationBottleneck(self.num_key_value_heads,kl_mult=config.att_mul) #(self.head_dim* self.num_key_value_groups)//config.att_mul)
else:
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.rotary_emb = MistralRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def get_num_rem_weights(self,hidden_mask_size):
#mask_1= self.ib_1.get_mask_hard()
mask_2 = self.ib_1.get_mask_hard().int()
#num_states_rem_1 =torch.sum((mask_1 == 1).int()) #if query, key and value are all present only then value exists
num_states_rem_2 =torch.sum((mask_2 == 1))
return ((self.head_dim*num_states_rem_2*2 * hidden_mask_size) * (1+ self.num_key_value_groups)) #no bias, (key,value + q,out)
def get_sparsity(self, hidden_mask_sparse):
att_sp= (self.head_dim * (self.ib_1.sparse/1e3) * 2 * (hidden_mask_sparse/1e3)) * (1+ self.num_key_value_groups)#no bias,
return att_sp #no bias
def get_kld_loss(self,hidden_mask,kl_fac):
#print("\n losses=",self.ib_1.kld.item() , hidden_mask.kld.item() )
kl= (self.ib_1.kld*kl_fac) + (hidden_mask.kld*kl_fac)
return kl
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
hidden_mask=None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) #bsz, self.num_key_value_heads,q_len, self.head_dim
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) #bsz, self.num_heads, q_len, kv_seq_len
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
#attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states) #bsz, self.num_heads, q_len, self.head_dim
if self.config.vib_layers==True:
attn_output = attn_output.permute(0,2,3,1).reshape(bsz* q_len* self.head_dim, self.num_key_value_groups,self.num_key_value_heads).reshape(bsz* q_len* self.head_dim*self.num_key_value_groups,-1) #bsz,q_len ,self.num_key_value_heads, self.num_key_value_groups,self.head_dim
attn_output= self.ib_1(attn_output).to(attn_output.dtype)
attn_output = attn_output.reshape(bsz,q_len,self.head_dim,self.num_key_value_heads* self.num_key_value_groups).permute(0,3,1,2) #bsz,self.num_heads,q_len, self.head_dim
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.num_heads*self.head_dim)
attn_output = self.o_proj(attn_output)
if self.config.vib_layers==True:
attn_output= attn_output.reshape(bsz* q_len,self.hidden_size)
attn_output = hidden_mask(attn_output).to(attn_output.dtype)
attn_output= attn_output.reshape(bsz, q_len, self.hidden_size)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# class MistralFlashAttention2(MistralAttention):
# """
# Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
# untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
# flash attention and deal with padding tokens in case the input contains any of them.
# """
# # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
# def __init__(self, *args, **kwargs):
# super().__init__(*args, **kwargs)
# # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
# self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
# def forward(
# self,
# hidden_states: torch.Tensor,
# attention_mask: Optional[torch.Tensor] = None,
# position_ids: Optional[torch.LongTensor] = None,
# past_key_value: Optional[Cache] = None,
# output_attentions: bool = False,
# use_cache: bool = False,
# **kwargs,
# ):
# if "padding_mask" in kwargs:
# warnings.warn(
# "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
# )
# # overwrite attention_mask with padding_mask
# attention_mask = kwargs.pop("padding_mask")
# bsz, q_len, _ = hidden_states.size()
# query_states = self.q_proj(hidden_states)
# key_states = self.k_proj(hidden_states)
# value_states = self.v_proj(hidden_states)
# query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# kv_seq_len = key_states.shape[-2]
# if past_key_value is not None:
# if self.layer_idx is None:
# raise ValueError(
# f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
# "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
# "with a layer index."
# )
# kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# # Because the input can be padded, the absolute sequence length depends on the max position id.
# rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
# cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# use_sliding_windows = (
# _flash_supports_window_size
# and getattr(self.config, "sliding_window", None) is not None
# and kv_seq_len > self.config.sliding_window
# )
# if not _flash_supports_window_size:
# logger.warning_once(
# "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
# " make sure to upgrade flash-attn library."
# )
# if past_key_value is not None:
# # Activate slicing cache only if the config has a value `sliding_windows` attribute
# cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
# if (
# getattr(self.config, "sliding_window", None) is not None
# and kv_seq_len > self.config.sliding_window
# and cache_has_contents
# ):
# slicing_tokens = 1 - self.config.sliding_window
# past_key = past_key_value[self.layer_idx][0]
# past_value = past_key_value[self.layer_idx][1]
# past_key = past_key[:, :, slicing_tokens:, :].contiguous()
# past_value = past_value[:, :, slicing_tokens:, :].contiguous()
# if past_key.shape[-2] != self.config.sliding_window - 1:
# raise ValueError(
# f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
# f" {past_key.shape}"
# )
# if attention_mask is not None:
# attention_mask = attention_mask[:, slicing_tokens:]
# attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# # repeat k/v heads if n_kv_heads < n_heads
# key_states = repeat_kv(key_states, self.num_key_value_groups)
# value_states = repeat_kv(value_states, self.num_key_value_groups)
# dropout_rate = 0.0 if not self.training else self.attention_dropout
# # In PEFT, usually we cast the layer norms in float32 for training stability reasons
# # therefore the input hidden states gets silently casted in float32. Hence, we need
# # cast them back in float16 just to be sure everything works as expected.
# input_dtype = query_states.dtype
# if input_dtype == torch.float32:
# if torch.is_autocast_enabled():
# target_dtype = torch.get_autocast_gpu_dtype()
# # Handle the case where the model is quantized
# elif hasattr(self.config, "_pre_quantization_dtype"):
# target_dtype = self.config._pre_quantization_dtype
# else:
# target_dtype = self.q_proj.weight.dtype
# logger.warning_once(
# f"The input hidden states seems to be silently casted in float32, this might be related to"
# f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
# f" {target_dtype}."
# )
# query_states = query_states.to(target_dtype)
# key_states = key_states.to(target_dtype)
# value_states = value_states.to(target_dtype)
# # Reashape to the expected shape for Flash Attention
# query_states = query_states.transpose(1, 2)
# key_states = key_states.transpose(1, 2)
# value_states = value_states.transpose(1, 2)
# attn_output = self._flash_attention_forward(
# query_states,
# key_states,
# value_states,
# attention_mask,
# q_len,
# dropout=dropout_rate,
# use_sliding_windows=use_sliding_windows,
# )
# attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
# attn_output = self.o_proj(attn_output)
# if not output_attentions:
# attn_weights = None
# return attn_output, attn_weights, past_key_value
# def _flash_attention_forward(
# self,
# query_states,
# key_states,
# value_states,
# attention_mask,
# query_length,
# dropout=0.0,
# softmax_scale=None,
# use_sliding_windows=False,
# ):
# """
# Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
# first unpad the input, then computes the attention scores and pad the final attention scores.
# Args:
# query_states (`torch.Tensor`):
# Input query states to be passed to Flash Attention API
# key_states (`torch.Tensor`):
# Input key states to be passed to Flash Attention API
# value_states (`torch.Tensor`):
# Input value states to be passed to Flash Attention API
# attention_mask (`torch.Tensor`):
# The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
# position of padding tokens and 1 for the position of non-padding tokens.
# dropout (`float`):
# Attention dropout
# softmax_scale (`float`, *optional*):
# The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
# use_sliding_windows (`bool`, *optional*):
# Whether to activate sliding window attention.
# """
# if not self._flash_attn_uses_top_left_mask:
# causal = self.is_causal
# else:
# # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
# causal = self.is_causal and query_length != 1
# # Contains at least one padding token in the sequence
# if attention_mask is not None:
# batch_size = query_states.shape[0]
# query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
# query_states, key_states, value_states, attention_mask, query_length
# )
# cu_seqlens_q, cu_seqlens_k = cu_seq_lens
# max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
# if not use_sliding_windows:
# attn_output_unpad = flash_attn_varlen_func(
# query_states,
# key_states,
# value_states,
# cu_seqlens_q=cu_seqlens_q,
# cu_seqlens_k=cu_seqlens_k,
# max_seqlen_q=max_seqlen_in_batch_q,
# max_seqlen_k=max_seqlen_in_batch_k,
# dropout_p=dropout,
# softmax_scale=softmax_scale,
# causal=causal,
# )
# else:
# attn_output_unpad = flash_attn_varlen_func(
# query_states,
# key_states,
# value_states,
# cu_seqlens_q=cu_seqlens_q,
# cu_seqlens_k=cu_seqlens_k,
# max_seqlen_q=max_seqlen_in_batch_q,
# max_seqlen_k=max_seqlen_in_batch_k,
# dropout_p=dropout,
# softmax_scale=softmax_scale,
# causal=causal,
# window_size=(self.config.sliding_window, self.config.sliding_window),
# )
# attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
# else:
# if not use_sliding_windows:
# attn_output = flash_attn_func(
# query_states,
# key_states,
# value_states,
# dropout,
# softmax_scale=softmax_scale,
# causal=causal,
# )
# else:
# attn_output = flash_attn_func(
# query_states,
# key_states,
# value_states,
# dropout,
# softmax_scale=softmax_scale,
# causal=causal,
# window_size=(self.config.sliding_window, self.config.sliding_window),
# )
# return attn_output
# def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
# batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
# # On the first iteration we need to properly re-create the padding mask
# # by slicing it on the proper place
# if kv_seq_len != attention_mask.shape[-1]:
# attention_mask_num_tokens = attention_mask.shape[-1]
# attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
# indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
# key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
# value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
# if query_length == kv_seq_len:
# query_layer = index_first_axis(
# query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
# )
# cu_seqlens_q = cu_seqlens_k
# max_seqlen_in_batch_q = max_seqlen_in_batch_k
# indices_q = indices_k
# elif query_length == 1:
# max_seqlen_in_batch_q = 1
# cu_seqlens_q = torch.arange(
# batch_size + 1, dtype=torch.int32, device=query_layer.device
# ) # There is a memcpy here, that is very bad.
# indices_q = cu_seqlens_q[:-1]
# query_layer = query_layer.squeeze(1)
# else:
# # The -q_len: slice assumes left padding.
# attention_mask = attention_mask[:, -query_length:]
# query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
# return (
# query_layer,
# key_layer,
# value_layer,
# indices_q,
# (cu_seqlens_q, cu_seqlens_k),
# (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
# )
# # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral
# # TODO @Arthur no longer copied from LLama after static cache
class MistralSdpaAttention(MistralAttention):
"""
Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from MistralAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
hidden_mask=None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
logger.warning_once(
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
hidden_mask=hidden_mask,
)
bsz, q_len, last_dim = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
) # bsz, self.num_heads, q_len, self.head_dim
if self.config.vib_layers==True:
attn_output = attn_output.permute(0,2,3,1).reshape(bsz* q_len* self.head_dim, self.num_key_value_groups,self.num_key_value_heads).reshape(bsz* q_len* self.head_dim*self.num_key_value_groups,-1) #bsz,q_len ,self.num_key_value_heads, self.num_key_value_groups,self.head_dim
attn_output= self.ib_1(attn_output).to(attn_output.dtype)
attn_output = attn_output.reshape(bsz,q_len,self.head_dim,self.num_key_value_heads* self.num_key_value_groups).permute(0,3,1,2) #bsz,self.num_heads,q_len, self.head_dim
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.num_heads*self.head_dim)
attn_output = self.o_proj(attn_output)
if self.config.vib_layers==True: #only during finetuning
attn_output= attn_output.reshape(bsz* q_len,self.hidden_size)
attn_output = hidden_mask(attn_output).to(attn_output.dtype)
attn_output= attn_output.reshape(bsz, q_len, self.hidden_size)
return attn_output, None, past_key_value
MISTRAL_ATTENTION_CLASSES = {
"eager": MistralAttention,
#"flash_attention_2": MistralFlashAttention2,
"sdpa": MistralSdpaAttention,
}
class MistralDecoderLayer(nn.Module):
def __init__(self, config: MistralConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.config=config
self.intermediate_size = config.intermediate_size
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.mlp = MistralMLP(config)
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_kld_loss(self,hidden_mask,kl_fac):
att_kl= self.self_attn.get_kld_loss(hidden_mask,kl_fac)
mlp_kl=self.mlp.get_kld_loss(hidden_mask,kl_fac)
return att_kl + mlp_kl
def get_pars(self):
inter_pars = 3*(self.intermediate_size * self.hidden_size)
atten_pars= ((2* self.hidden_size * self.hidden_size) + (self.hidden_size * 2 * self.self_attn.num_key_value_heads * self.self_attn.head_dim))
layer_norm= 2* self.hidden_size
return (inter_pars+atten_pars+layer_norm)
def get_num_rem_weights(self,hidden_mask_size): #head_list, mlp_list
if self.mlp is not None:
mlp_out_rem = self.mlp.get_num_rem_weights(hidden_mask_size)
else:
mlp_out_rem=0
if self.self_attn is not None:
att_out= self.self_attn.get_num_rem_weights(hidden_mask_size)
else:
att_out= 0
layer_norm= 2 * hidden_mask_size
return att_out, (mlp_out_rem + layer_norm)
def get_sparsity(self,hidden_mask):
if self.mlp is not None:
hidden_mask_sparse= hidden_mask.sparse
out_sparse= self.mlp.get_sparsity(hidden_mask_sparse)
else:
out_sparse = 0.0
if self.self_attn is not None:
hidden_mask_sparse= hidden_mask.sparse
attn_sparse= self.self_attn.get_sparsity(hidden_mask_sparse)
else:
attn_sparse=0.0
layer_norm= 2 * hidden_mask_sparse.detach()/1e6
return attn_sparse,(out_sparse +layer_norm)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
hidden_mask= None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
hidden_z= hidden_mask.get_mask_hard().int() if self.config.vib_layers==True else None
residual = hidden_states
if self.config.vib_layers==True:
hidden_states = self.input_layernorm(hidden_states,hidden_z)
else:
#start_nor= time.time()
hidden_states = self.input_layernorm(hidden_states)
#lay_time= time.time() - start_nor
# Self Attention
#start_t= time.time()
if self.self_attn is not None:
st_att= time.time()
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
hidden_mask=hidden_mask,
)
#att_time= time.time() - st_att
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
if self.config.vib_layers==True:
hidden_z= hidden_mask.get_mask_hard()
hidden_states = self.post_attention_layernorm(hidden_states,hidden_z)
else:
#start_norm= time.time()
hidden_states = self.post_attention_layernorm(hidden_states)
#lay_time += (time.time() - start_norm)
#start_ti= time.time()
if self.mlp is not None:
#st_mlp= time.time()
hidden_states = self.mlp(hidden_states,hidden_mask=hidden_mask)
#mlp_time= time.time() - st_mlp
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs #, att_time, mlp_time,lay_time
MISTRAL_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MistralConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
MISTRAL_START_DOCSTRING,
)
class MistralPreTrainedModel(PreTrainedModel):
config_class = MistralConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MistralDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.data.half()
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, InformationBottleneck):
module.post_z_mu.data.normal_(mean=1, std=0.01)
module.post_z_logD.data.normal_(mean=-9, std=0.01)
module.post_z_mu.data= module.post_z_mu.data.half()
module.post_z_logD.data= module.post_z_logD.data.half()
MISTRAL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention