-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathLOONE_V_4_Val.py
821 lines (774 loc) · 68.1 KB
/
LOONE_V_4_Val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 18 18:44:37 2021
@author: osama
"""
#This Script incorporates the Comprehensive LOONE Model!
Working_Path = 'C:/Osama_PC/LOONE/Model/LOONE_Model'
import os
import pandas as pd
from datetime import datetime
import numpy as np
from calendar import monthrange
os.chdir('%s'%Working_Path)
from Pre_defined_Variables import Pre_defined_Variables
from Model_variables import M_var
from Model_Config import Model_Config
from LO_FNs import LO_FNs
from Stg_Sto_Ar import Stg_Sto_Ar
from LONINO_FNs import LONINO_FNs
from Dec_Tree_FNs import Dec_Tree_FNs
from WCA_Stages_Cls import WCA_Stages_Cls
from Additional_Fncs import Add_Fn
from THC_Class import THC_Class
from Data import Data
from df_WSMs import WSMs
from Trib_HC import Trib_HC
from Stg_Sto_Ar import Stg_Sto_Ar
from TP_Variables_Regions import TP_Variables
import TP_Mass_Balance_Functions_Regions as TP_MBFR
def LOONE_HydNut():
# Based on the defined Start and End year, month, and day on the Pre_defined_Variables File, Startdate and enddate are defined.
year, month, day = map(int, Pre_defined_Variables.startdate_entry)
startdate = datetime(year, month, day).date()
year, month, day = map(int, Pre_defined_Variables.startdate_entry)
begdateCS = datetime(year, month, day).date()
year, month, day = map(int, Pre_defined_Variables.enddate_entry)
enddate = datetime(year, month, day).date()
#############################################################################################################################
Results_data = pd.read_csv('./Outputs/Opt_Decision_Var.csv')
Results = Results_data['Value']
P_1 = Results[0]
P_2 = Results[1]
S77_DV = Results[2:14]
S308_DV = Results[14:26]
#First, I interpolated each Water Shortage Management (WSMs) and each Regulation Schedule Breakpoint Zone (D, C, B, and A).
#Set time frame for model run such that it starts on the defined startdate but ends on 1/1/(endyear+1)
date_rng_1 = pd.date_range(start = startdate, end = '1/1/%d'%(Pre_defined_Variables.endyear+1), freq= 'D')
#Create a data frame with a date column
if Model_Config.Sim_type == 0 or Model_Config.Sim_type == 1:
WSMs()
df_WSMs = pd.read_csv('./Data/df_WSMs.csv')
else:
df_WSMs = pd.read_csv('./Data/df_WSMs.csv')
#############################################################################
#The Following Code interpolates daily LOSA demand from weekly data for 6 differnet datasets where the user defines the LOSA demand that will be used based on a Code (1:6).
#Set time frame for model run
date_rng_2 = pd.date_range(start=startdate, end = enddate, freq= 'D')
#Create a data frame with a date column
Water_dmd = pd.DataFrame(date_rng_2, columns =['date'])
N = []
Wk = []
#Generate a count list
for i in Water_dmd['date']:
if i.month == 1 and i.day == 1:
n = 0
else:
n = n + 1
N.append(n)
Water_dmd['count'] = N
#Calculate the week number for all rows in the data frame
for i in Water_dmd['count']:
if i > 363:
J = 52
else:
J = int(i/7)+1
Wk.append(J)
Water_dmd['Week_num'] = Wk
dd = [] #daily demand
#Calculate daily water demand
for i in Water_dmd['Week_num']:
D = ((Data.Weekly_dmd['C%s'%Pre_defined_Variables.Code].iloc[i-1])/7)*(Pre_defined_Variables.Multiplier/100)
dd.append(D)
Water_dmd['Daily_demand'] = dd
##############################################################################################
#Determine Tributary Hydrologic Conditions
TC_LONINO_df = Trib_HC()
#Determine WCA Stages
WCA_Stages_df = WCA_Stages_Cls(TC_LONINO_df)
#A dataframe to determine eachday's season (Months 11,12,1,2 are Season 1, Months 3,4,5 are season 2, Months 6,7 are season 3, Months 8,9,10 are season 4 )
date_rng_5 = pd.date_range(start = startdate, end = enddate, freq ='D')
Seasons = pd.DataFrame(date_rng_5, columns =['date'])
Seas_Count = len(Seasons.index)
for i in range(Seas_Count):
if Seasons['date'].iloc[i].month > 2 and Seasons['date'].iloc[i].month < 6:
S = 2
elif Seasons['date'].iloc[i].month > 5 and Seasons['date'].iloc[i].month < 8:
S = 3
elif Seasons['date'].iloc[i].month > 7 and Seasons['date'].iloc[i].month < 11:
S = 4
else:
S = 1
M_var.Daily_Seasons[i] = S
M_var.Mon[i] = Seasons['date'].iloc[i].month
Seasons['Season'] = M_var.Daily_Seasons
Seasons['Month'] = M_var.Mon
##################################################################################################################
#This following Script runs the main model daily simulations.
date_rng_6 = pd.date_range(start='12/30/%d'%(Pre_defined_Variables.startyear-1), end = enddate, freq= 'D')
LO_Model = pd.DataFrame(date_rng_6, columns =['date'])
LO_Model['Net_Inflow'] = Data.NetInf_Input['Netflows_acft']
n_rows = len(LO_Model.index)
LO_Model['LOSA_dmd_SFWMM'] = Data.SFWMM_W_dmd['LOSA_dmd'] * (Pre_defined_Variables.Mult_LOSA/100)
LO_Model['C44RO'] = Data.C44_Runoff['C44RO']
##################################
DecTree_df = pd.DataFrame(date_rng_5, columns = ['Date'])
DecTree_df['Zone_B_MetFcast'] = TC_LONINO_df['LONINO_Seasonal_Classes']
#Create a dataframe that includes Monthly Mean Basin Runoff & BaseFlow-Runoff & Runoff-Baseflow (cfs)
date_rng_11 = pd.date_range(start=startdate, end = enddate, freq= 'MS')
date_rng_11d = pd.date_range(start=startdate, end = enddate, freq= 'D')
date_rng_11d.name = 'Date'
Basin_RO = pd.DataFrame(date_rng_11, columns =['date'])
#Baseflows
Outlet1_baseflow = Data.S77_RegRelRates['Zone_D0'].iloc[0]
Outlet2_baseflow = Data.S80_RegRelRates['Zone_D0'].iloc[0]
#Calculta number of months in the timeseries data.
num_B_R = len(Basin_RO.index)
BS_C43RO = np.zeros(num_B_R)
BS_C44RO = np.zeros(num_B_R)
C44RO_SLTRIB = np.zeros(num_B_R)
C44RO_BS = np.zeros(num_B_R)
Num_days = np.zeros(num_B_R)
for i in range(num_B_R) :
Num_days[i] = monthrange(Basin_RO['date'].iloc[i].year, Basin_RO['date'].iloc[i].month)[1] #no. of days in each time step month.
BS_C43RO[i] = max(0, (Outlet1_baseflow - Data.C43RO['C43RO'].iloc[i]))
BS_C44RO[i] = max(0, (Outlet2_baseflow - Data.C44RO['C44RO'].iloc[i]))
C44RO_SLTRIB[i] = BS_C44RO[i] + Data.SLTRIB['SLTRIB_cfs'].iloc[i]
C44RO_BS[i] = max(0, Data.C44RO['C44RO'].iloc[i] - Outlet2_baseflow)*Num_days[i]
Basin_RO['Ndays'] = Num_days
Basin_RO['C43RO'] = Data.C43RO['C43RO']
Basin_RO['BS-C43RO'] = BS_C43RO
Basin_RO['C44RO'] = Data.C44RO['C44RO']
Basin_RO['BS-C44RO'] = BS_C44RO
Basin_RO['SLTRIB'] = Data.SLTRIB['SLTRIB_cfs']
Basin_RO['C44RO_SLTRIB'] = C44RO_SLTRIB
Basin_RO['C44RO-BS'] = C44RO_BS
LO_Model['C43RO'] = Data.C43RO_Daily['C43RO']
S80avgL1 = Data.Pulses['S-80_L1_%s'%Pre_defined_Variables.Schedule].mean()
S80avgL2 = Data.Pulses['S-80_L2_%s'%Pre_defined_Variables.Schedule].mean()
S80avgL3 = Data.Pulses['S-80_L3_%s'%Pre_defined_Variables.Schedule].mean()
S77avgL1 = Data.Pulses['S-77_L1_%s'%Pre_defined_Variables.Schedule].mean() #LORS
S77avgL2 = Data.Pulses['S-77_L2_%s'%Pre_defined_Variables.Schedule].mean() #LORS
S77avgL3 = Data.Pulses['S-77_L3_%s'%Pre_defined_Variables.Schedule].mean()
Basin_RO = Basin_RO.set_index(['date'])
Basin_RO.index = pd.to_datetime(Basin_RO.index)
Basin_RO_Daily = Basin_RO.reindex(date_rng_11d, method='ffill')
Basin_RO = Basin_RO.reset_index()
VLOOKUP1 = Basin_RO_Daily['BS-C44RO']
VLOOKUP1_c = [x for x in VLOOKUP1 if ~np.isnan(x)]
##################################################################################################################
#This following script contains the logic and calculations for the proposed Lake Okeechobee Adaptive Protocol.
AdapProt_df = pd.DataFrame(date_rng_5, columns = ['date'])
#Calculate Late Dry Season (Apr-May) logic.
Late_Dry_Season = []
for i in AdapProt_df['date']:
if i.month > 3 and i.month < 6:
L = True
else:
L= False
Late_Dry_Season.append(L)
AdapProt_df['Late_Dry_Season'] = Late_Dry_Season
AdapProt_df['Tributary Hydrologic Condition'] = TC_LONINO_df['Tributary_Condition']
#Define "Low Chance" 6/1 stg<11'
if Pre_defined_Variables.Opt_Date_Targ_Stg ==1:
Targ_Stg = Data.Targ_Stg_June_1st
else:
Targ_Stg = Data.Targ_Stg_May_1st
Targ_Stg_df = pd.DataFrame(date_rng_5, columns = ['dates'])
for i in range(len(Targ_Stg_df)):
M_var.V10per[i] = Add_Fn.Replicate(Targ_Stg_df['dates'].iloc[i].year, Targ_Stg_df['dates'].iloc[i].timetuple().tm_yday,10,Targ_Stg)
M_var.V20per[i] = Add_Fn.Replicate(Targ_Stg_df['dates'].iloc[i].year, Targ_Stg_df['dates'].iloc[i].timetuple().tm_yday,20,Targ_Stg)
M_var.V25per[i] = Add_Fn.Replicate(Targ_Stg_df['dates'].iloc[i].year, Targ_Stg_df['dates'].iloc[i].timetuple().tm_yday,25,Targ_Stg)
M_var.V30per[i] = Add_Fn.Replicate(Targ_Stg_df['dates'].iloc[i].year, Targ_Stg_df['dates'].iloc[i].timetuple().tm_yday,30,Targ_Stg)
M_var.V40per[i] = Add_Fn.Replicate(Targ_Stg_df['dates'].iloc[i].year, Targ_Stg_df['dates'].iloc[i].timetuple().tm_yday,40,Targ_Stg)
M_var.V45per[i] = Add_Fn.Replicate(Targ_Stg_df['dates'].iloc[i].year, Targ_Stg_df['dates'].iloc[i].timetuple().tm_yday,45,Targ_Stg)
M_var.V50per[i] = Add_Fn.Replicate(Targ_Stg_df['dates'].iloc[i].year, Targ_Stg_df['dates'].iloc[i].timetuple().tm_yday,50,Targ_Stg)
M_var.V60per[i] = Add_Fn.Replicate(Targ_Stg_df['dates'].iloc[i].year, Targ_Stg_df['dates'].iloc[i].timetuple().tm_yday,60,Targ_Stg)
V10per_c = [x for x in M_var.V10per if ~np.isnan(x)]
V20per_c = [x for x in M_var.V20per if ~np.isnan(x)]
V25per_c = [x for x in M_var.V25per if ~np.isnan(x)]
V30per_c = [x for x in M_var.V30per if ~np.isnan(x)]
V40per_c = [x for x in M_var.V40per if ~np.isnan(x)]
V45per_c = [x for x in M_var.V45per if ~np.isnan(x)]
V50per_c = [x for x in M_var.V50per if ~np.isnan(x)]
V60per_c = [x for x in M_var.V60per if ~np.isnan(x)]
Targ_Stg_df['10%'] = V10per_c
Targ_Stg_df['20%'] = V20per_c
Targ_Stg_df['25%'] = V25per_c
Targ_Stg_df['30%'] = V30per_c
Targ_Stg_df['40%'] = V40per_c
Targ_Stg_df['45%'] = V45per_c
Targ_Stg_df['50%'] = V50per_c
Targ_Stg_df['60%'] = V60per_c
# Outlet1_baseflow = Data.S77_RegRelRates['Zone_D0'].iloc[0]
Outlet1_baseflow = 450 #cfs
VLOOKUP2 = Basin_RO_Daily['BS-C43RO']
VLOOKUP2_c = [x for x in VLOOKUP2 if ~np.isnan(x)]
####################################################################################################################
M_var.Lake_Stage[0] = Pre_defined_Variables.begstageCS
M_var.Lake_Stage[1] = Pre_defined_Variables.begstageCS
M_var.DecTree_Relslevel[0] = np.nan
M_var.DecTree_Relslevel[1] = np.nan
if startdate.month == LO_Model['date'].iloc[2].month and startdate.day == LO_Model['date'].iloc[2].day:
X1 = 'SimDay1'
elif begdateCS.year == LO_Model['date'].iloc[2].year and begdateCS.month == LO_Model['date'].iloc[2].month and begdateCS.day == LO_Model['date'].iloc[2].day:
X1 = 'CS start date'
else:
X1 = LO_Model['date'].iloc[2]
M_var.DayFlags[2] = X1
StartStorage = Stg_Sto_Ar.stg2sto(Pre_defined_Variables.startstage,0)
M_var.Storage[0] = StartStorage
M_var.Storage[1] = StartStorage
# Flood = np.zeros(n_rows, dtype = object)
##Here, I will insert the Storage Deviaiton Values as Input!
Storage_dev = Data.Stroage_dev_df['DS_dev']
#Create a Choose Function for AP Post Baseflow
# if Pre_defined_Variables.Opt_AdapProt == 0:
# C = 450
# elif Pre_defined_Variables.Opt_AdapProt == 1:
# C = Data.S77_RegRelRates['Zone_D0'].iloc[0]
# Choose_1 = C
Choose_1 = 450 #cfs
####################################################################################################################
Load_ext = pd.read_csv('./Data/LO_External_Loadings_3MLag_%s.csv'%Pre_defined_Variables.Schedule)
Q_in = pd.read_csv('./Data/LO_Inflows_BK_%s.csv'%Pre_defined_Variables.Schedule)
##############################################################################################################
L_ext = Load_ext['TP_Loads_In_mg'] #mg
Atm_Dep_N = TP_Variables.N_Per * Load_ext['Atm_Loading_mg']
Atm_Dep_S = TP_Variables.S_Per * Load_ext['Atm_Loading_mg']
# Q_Out = pd.read_csv('./Data/Outflows_consd_20082018.csv')
# C_rain = 10.417 #TP Rainfall Concentration (µg P L-1 = mg P /m3)
# L_drdep = 0.0385 # mg P / m2 / day
# Atm_Dep_N = TP_Variables.N_Per * (C_rain*RF_Vol*1233.48 + L_drdep*LO_Area*4046.85642)
# Atm_Dep_S = TP_Variables.S_Per * (C_rain*RF_Vol*1233.48 + L_drdep*LO_Area*4046.85642)
# Atm_Dep_N = TP_Variables.N_Per*(18/365)*LO_Area*4046.85642 #Based on data presented by Curtis Pollman, the Lake Okeechobee Technical Advisory Committee (2000) recommended that 18 mgP/m2-yr is an appropriate atmospheric loading of phosphorus over the open lake.
# Atm_Dep_S = TP_Variables.S_Per*(18/365)*LO_Area*4046.85642
#Read Shear Stress driven by Wind Speed
Wind_ShearStr = pd.read_csv('./Data/WindShearStress_%s.csv'%Pre_defined_Variables.Schedule)
W_SS = Wind_ShearStr['ShearStress'] #Dyne/cm2
nu_ts = pd.read_csv('./Data/nu_%s.csv'%Pre_defined_Variables.Schedule)
LO_BL = 0.5 # m (Bed Elevation of LO)
# LO_WD = pd.to_numeric(Stage_Storage['Stage_m'])-LO_BL
g = 9.8 #m/s2 gravitational acceleration
Cal_Res = pd.read_csv('C:/Osama_PC/LOONE/Model/LOONE_Model/Data/nondominated_Sol_var.csv')
Par = Cal_Res['Par']
d_c = Par[20] # m (particle diameter 10 microm /1E6 to convert to m) clay
d_s = Par[21] # m sand
nu_d = nu_ts['nu']
# LO_Temp = 1.0034/1E6 # m2/s (kinematic viscosity of water at T = 20 C)
# water_density = 1 # g/cm3
# a = 20.0
# n = 0.9
# b = 2.5
# m = 1.2
R = 1.65 #submerged specific gravity (1.65 for quartz in water)
C_1_c = Par[16]
C_2_c = Par[17]
C_1_s = Par[18]
C_2_s = Par[19]
#Parameters associated with sediment resuspension
E_0 = 1E-4
E_1 = 2
E_2 = 3
Crtcl_ShStr = Par[22] #0.32 #Dyne/cm2
Td = Par[23] #days
n_rows = len(Load_ext.index)
L_ext_M = np.zeros(n_rows,dtype = object)
Q_N2S = np.zeros(n_rows,dtype = object)
# Stage_LO = Stage_Storage['Stage_ft']
# Storage = Stage_Storage['Storage_acft']
LO_WD = np.zeros(n_rows,dtype = object)
Lake_O_Storage_N = np.zeros(n_rows,dtype = object)
Lake_O_Storage_S = np.zeros(n_rows,dtype = object)
Lake_O_A_N = np.zeros(n_rows,dtype = object)
Lake_O_A_S = np.zeros(n_rows,dtype = object)
Lake_O_A_M_N = np.zeros(n_rows,dtype = object)
Lake_O_A_S_N = np.zeros(n_rows,dtype = object)
Lake_O_A_R_N = np.zeros(n_rows,dtype = object)
Lake_O_A_P_N = np.zeros(n_rows,dtype = object)
Lake_O_A_M_S = np.zeros(n_rows,dtype = object)
Lake_O_A_S_S = np.zeros(n_rows,dtype = object)
Lake_O_A_R_S = np.zeros(n_rows,dtype = object)
Lake_O_A_P_S = np.zeros(n_rows,dtype = object)
DIP_Lake_N = np.zeros(n_rows,dtype = object)
DIP_Lake_S = np.zeros(n_rows,dtype = object)
TP_Lake_Mean = np.zeros(n_rows,dtype = object)
J_des_M_N = np.zeros(n_rows,dtype = object)
J_des_S_N = np.zeros(n_rows,dtype = object)
J_des_R_N = np.zeros(n_rows,dtype = object)
J_des_P_N = np.zeros(n_rows,dtype = object)
J_des_M_S = np.zeros(n_rows,dtype = object)
J_des_S_S = np.zeros(n_rows,dtype = object)
J_des_R_S = np.zeros(n_rows,dtype = object)
J_des_P_S = np.zeros(n_rows,dtype = object)
J_ads_M_N = np.zeros(n_rows,dtype = object)
J_ads_S_N = np.zeros(n_rows,dtype = object)
J_ads_R_N = np.zeros(n_rows,dtype = object)
J_ads_P_N = np.zeros(n_rows,dtype = object)
J_ads_M_S = np.zeros(n_rows,dtype = object)
J_ads_S_S = np.zeros(n_rows,dtype = object)
J_ads_R_S = np.zeros(n_rows,dtype = object)
J_ads_P_S = np.zeros(n_rows,dtype = object)
P_sed_M_N = np.zeros(n_rows,dtype = object)
P_sed_S_N = np.zeros(n_rows,dtype = object)
P_sed_R_N = np.zeros(n_rows,dtype = object)
P_sed_P_N = np.zeros(n_rows,dtype = object)
P_sed_M_S = np.zeros(n_rows,dtype = object)
P_sed_S_S = np.zeros(n_rows,dtype = object)
P_sed_R_S = np.zeros(n_rows,dtype = object)
P_sed_P_S = np.zeros(n_rows,dtype = object)
J_sedburial_M_N = np.zeros(n_rows,dtype = object)
J_sedburial_S_N = np.zeros(n_rows,dtype = object)
J_sedburial_R_N = np.zeros(n_rows,dtype = object)
J_sedburial_P_N = np.zeros(n_rows,dtype = object)
J_sedburial_M_S = np.zeros(n_rows,dtype = object)
J_sedburial_S_S = np.zeros(n_rows,dtype = object)
J_sedburial_R_S = np.zeros(n_rows,dtype = object)
J_sedburial_P_S = np.zeros(n_rows,dtype = object)
J_Γburial_M_N = np.zeros(n_rows,dtype = object)
J_Γburial_S_N = np.zeros(n_rows,dtype = object)
J_Γburial_R_N = np.zeros(n_rows,dtype = object)
J_Γburial_P_N = np.zeros(n_rows,dtype = object)
J_Γburial_M_S = np.zeros(n_rows,dtype = object)
J_Γburial_S_S = np.zeros(n_rows,dtype = object)
J_Γburial_R_S = np.zeros(n_rows,dtype = object)
J_Γburial_P_S = np.zeros(n_rows,dtype = object)
Γ_M_N = np.zeros(n_rows,dtype = object)
Γ_S_N = np.zeros(n_rows,dtype = object)
Γ_R_N = np.zeros(n_rows,dtype = object)
Γ_P_N= np.zeros(n_rows,dtype = object)
Γ_M_S = np.zeros(n_rows,dtype = object)
Γ_S_S = np.zeros(n_rows,dtype = object)
Γ_R_S = np.zeros(n_rows,dtype = object)
Γ_P_S = np.zeros(n_rows,dtype = object)
DIP_pore_M_N = np.zeros(n_rows,dtype = object)
DIP_pore_S_N = np.zeros(n_rows,dtype = object)
DIP_pore_R_N = np.zeros(n_rows,dtype = object)
DIP_pore_P_N = np.zeros(n_rows,dtype = object)
DIP_pore_M_S = np.zeros(n_rows,dtype = object)
DIP_pore_S_S = np.zeros(n_rows,dtype = object)
DIP_pore_R_S = np.zeros(n_rows,dtype = object)
DIP_pore_P_S = np.zeros(n_rows,dtype = object)
TP_Lake_N = np.zeros(n_rows,dtype = object)
TP_Lake_S = np.zeros(n_rows,dtype = object)
Sed_Resusp_M_N = np.zeros(n_rows,dtype = object)
Sed_Resusp_S_N = np.zeros(n_rows,dtype = object)
Sed_Resusp_R_N = np.zeros(n_rows,dtype = object)
Sed_Resusp_P_N = np.zeros(n_rows,dtype = object)
Sed_Resusp_M_S = np.zeros(n_rows,dtype = object)
Sed_Resusp_S_S= np.zeros(n_rows,dtype = object)
Sed_Resusp_R_S = np.zeros(n_rows,dtype = object)
Sed_Resusp_P_S = np.zeros(n_rows,dtype = object)
J_decomp_M_N = np.zeros(n_rows,dtype = object)
J_decomp_S_N = np.zeros(n_rows,dtype = object)
J_decomp_R_N = np.zeros(n_rows,dtype = object)
J_decomp_P_N = np.zeros(n_rows,dtype = object)
J_decomp_M_S = np.zeros(n_rows,dtype = object)
J_decomp_S_S = np.zeros(n_rows,dtype = object)
J_decomp_R_S = np.zeros(n_rows,dtype = object)
J_decomp_P_S = np.zeros(n_rows,dtype = object)
Settling_P_N = np.zeros(n_rows,dtype = object)
Settling_P_S = np.zeros(n_rows,dtype = object)
P_diff_M_N = np.zeros(n_rows,dtype = object)
P_diff_S_N = np.zeros(n_rows,dtype = object)
P_diff_R_N = np.zeros(n_rows,dtype = object)
P_diff_P_N = np.zeros(n_rows,dtype = object)
P_diff_M_S = np.zeros(n_rows,dtype = object)
P_diff_S_S = np.zeros(n_rows,dtype = object)
P_diff_R_S = np.zeros(n_rows,dtype = object)
P_diff_P_S = np.zeros(n_rows,dtype = object)
# TP_N_to_S = np.zeros(n_rows,dtype = object)
# TP_Out = np.zeros(n_rows,dtype = object)
# L_Ext_mgperm3 = np.zeros(n_rows,dtype = object)
Q_I = Q_in['Flow_cmd']
Q_I_M = np.zeros(n_rows,dtype = object)
Q_O = np.zeros(n_rows,dtype = object)
# Indust_O = pd.read_csv('./Data/INDUST_Outflow_20082018.csv')
# Q_O = Q_Out['Total_Outflows_acft'] * 1233.48 + Indust_O['INDUST_cmd']
Q_O_M = np.zeros(n_rows,dtype = object)
P_Load_Cal = np.zeros(n_rows,dtype = object)
P_Load_StL = np.zeros(n_rows,dtype = object)
P_Load_South = np.zeros(n_rows,dtype = object)
#Ferguson, R. I., and Church, M. (2004).
# v_settle_N_c = (R*g*d_c**2)/(C_1_c*nu+(0.75*C_2_c*R*g*d_c**3)**0.5)
# v_settle_N_s = (R*g*d_s**2)/(C_1_s*nu+(0.75*C_2_s*R*g*d_s**3)**0.5)
# v_settle_N = v_settle_N_c*((TP_Variables.A_Mud_N+TP_Variables.A_Peat_N)/TP_Variables.A_N) + v_settle_N_s*((TP_Variables.A_Sand_N + TP_Variables.A_Rock_N)/TP_Variables.A_N)
# v_settle_S_c = (R*g*d_c**2)/(C_1_c*nu+(0.75*C_2_c*R*g*d_c**3)**0.5)
# v_settle_S_s = (R*g*d_s**2)/(C_1_s*nu+(0.75*C_2_s*R*g*d_s**3)**0.5)
# v_settle_S = v_settle_S_c*((TP_Variables.A_Mud_S+TP_Variables.A_Peat_S)/TP_Variables.A_S) + v_settle_S_s*((TP_Variables.A_Sand_S + TP_Variables.A_Rock_S)/TP_Variables.A_S)
v_settle_N_c = np.zeros(n_rows,dtype = object)
v_settle_N_s = np.zeros(n_rows,dtype = object)
v_settle_N = np.zeros(n_rows,dtype = object)
v_settle_S_c = np.zeros(n_rows,dtype = object)
v_settle_S_s = np.zeros(n_rows,dtype = object)
v_settle_S = np.zeros(n_rows,dtype = object)
# v_settle_N = np.zeros(n_rows,dtype = object)
# v_settle_S = np.zeros(n_rows,dtype = object)
#####################################################################################################
##Initial Values##
#S.A. is calculated based on the Lake's previous time step Stage, but for the S.A. at i=0 I used same time step Stage!
Q_O[0] = 0
Q_O[1] = 46485 #cmd
#TP_MassBalanceModel Initial Values.
TP_Lake_N[0] = 225 #mg/m3
TP_Lake_S[0] = 275 #mg/m3
TP_Lake_Mean[0] = (TP_Lake_N[0] + TP_Lake_S[0])/2
Γ_M_N[0] = 25 #mg/kg
Γ_S_N[0] = 25 #mg/kg
Γ_R_N[0] = 25 #mg/kg
Γ_P_N[0] = 25 #mg/kg
Γ_M_S[0] = 25 #mg/kg
Γ_S_S[0] = 25 #mg/kg
Γ_R_S[0] = 25 #mg/kg
Γ_P_S[0] = 25 #mg/kg
DIP_pore_M_N[0] = 700#760 #mg/m3
DIP_pore_S_N[0] = 240#205 #mg/m3
DIP_pore_R_N[0] = 240#205 #mg/m3
DIP_pore_P_N[0] = 160#160 #mg/m3
DIP_pore_M_S[0] = 700#760 #mg/m3
DIP_pore_S_S[0] = 240#205 #mg/m3
DIP_pore_R_S[0] = 240#205 #mg/m3
DIP_pore_P_S[0] = 160#160 #mg/m3
P_sed_M_N[0] = 1100 #mg/kg
P_sed_S_N[0] = 300 #mg/kg
P_sed_R_N[0] = 300 #mg/kg
P_sed_P_N[0] = 200 #mg/kg
P_sed_M_S[0] = 1100 #mg/kg
P_sed_S_S[0] = 300 #mg/kg
P_sed_R_S[0] = 300 #mg/kg
P_sed_P_S[0] = 200 #mg/kg
Θ_M = 1-((TP_Variables.Bulk_density_M/TP_Variables.Particle_density_M)*((100-TP_Variables.Per_H2O_M)/100))
Θ_S = 1-((TP_Variables.Bulk_density_S/TP_Variables.Particle_density_S)*((100-TP_Variables.Per_H2O_S)/100))
Θ_R = 1-((TP_Variables.Bulk_density_R/TP_Variables.Particle_density_R)*((100-TP_Variables.Per_H2O_R)/100))
Θ_P = 1-((TP_Variables.Bulk_density_P/TP_Variables.Particle_density_P)*((100-TP_Variables.Per_H2O_P)/100))
#Mass of sediment in surfacial mix Mud layer in the North Region(kg)
Mass_sed_M_N = TP_Variables.A_Mud_N * TP_Variables.Z_sed * ((100-TP_Variables.Per_H2O_M)/100) * TP_Variables.Bulk_density_M * 1000
#Mass of sediment in surfacial mix Sand layer in the North Region(kg)
Mass_sed_S_N = TP_Variables.A_Sand_N * TP_Variables.Z_sed * ((100-TP_Variables.Per_H2O_S)/100) * TP_Variables.Bulk_density_S * 1000
#Mass of sediment in surfacial mix Rock layer in the North Region(kg)
Mass_sed_R_N = TP_Variables.A_Rock_N * TP_Variables.Z_sed * ((100-TP_Variables.Per_H2O_R)/100) * TP_Variables.Bulk_density_R * 1000
#Mass of sediment in surfacial mix Peat layer in the North Region(kg)
Mass_sed_P_N = TP_Variables.A_Peat_N * TP_Variables.Z_sed * ((100-TP_Variables.Per_H2O_P)/100) * TP_Variables.Bulk_density_P * 1000
#Mass of sediment in surfacial mix Mud layer in the South Region(kg)
Mass_sed_M_S = TP_Variables.A_Mud_S * TP_Variables.Z_sed * ((100-TP_Variables.Per_H2O_M)/100) * TP_Variables.Bulk_density_M * 1000
#Mass of sediment in surfacial mix Sand layer in the South Region(kg)
Mass_sed_S_S = TP_Variables.A_Sand_S * TP_Variables.Z_sed * ((100-TP_Variables.Per_H2O_S)/100) * TP_Variables.Bulk_density_S * 1000
#Mass of sediment in surfacial mix Rock layer in the South Region(kg)
Mass_sed_R_S = TP_Variables.A_Rock_S * TP_Variables.Z_sed * ((100-TP_Variables.Per_H2O_R)/100) * TP_Variables.Bulk_density_R * 1000
#Mass of sediment in surfacial mix Peat layer in the South Region(kg)
Mass_sed_P_S = TP_Variables.A_Peat_S * TP_Variables.Z_sed * ((100-TP_Variables.Per_H2O_P)/100) * TP_Variables.Bulk_density_P * 1000
######################################################################################################################################
M_var.Zone_Code[0] = LO_FNs.Zone_Code(M_var.Lake_Stage[0],df_WSMs['A'].iloc[0],df_WSMs['B'].iloc[0],df_WSMs['C'].iloc[0],df_WSMs['D3'].iloc[0],df_WSMs['D2'].iloc[0],df_WSMs['D1'].iloc[0],df_WSMs['D0'].iloc[0],df_WSMs['WSM1'].iloc[0])
M_var.LO_Zone[0] = LO_FNs.LO_Zone(M_var.Zone_Code[0])
for i in range(n_rows-2):
M_var.WSM_Zone[i+2] = LO_FNs.WSM_Zone(M_var.Lake_Stage[i+1],df_WSMs.at[i+1, 'WSM4'],df_WSMs.at[i+1, 'WSM3'],df_WSMs.at[i+1, 'WSM2'],df_WSMs.at[i+1, 'WSM1'])
#Calculate Daily Maximum Water Supply
# Note that in LOSA_dmd we used (i) because this file starts from 1/1/2008 so i at this point =0.
#Cutbacks are determined based on the WSM Zone.
M_var.Max_Supply[i+2] = LO_FNs.Max_Supply(M_var.WSM_Zone[i+2],Water_dmd.at[i, 'Daily_demand'],Pre_defined_Variables.Z1_cutback,Pre_defined_Variables.Z2_cutback,Pre_defined_Variables.Z3_cutback,Pre_defined_Variables.Z4_cutback)
#Actual Daily Water supply
M_var.LOSA_Supply[i+2] = LO_FNs.LOSA_Supply(M_var.WSM_Zone[i+2],LO_Model.at[i+2, 'LOSA_dmd_SFWMM'],M_var.Max_Supply[i+2],Pre_defined_Variables.Opt_LOSAws)
# NetInflow - LOSA Supply
M_var.NI_Supply[i+2] = LO_Model.at[i+2, 'Net_Inflow'] - M_var.LOSA_Supply[i+2]
#TODO Note: for the pass statement, We will read the Daily Water supply from the SFWMM as an input.
#Calculate the cutback where Cutback = Demand - Supply
ctbk = LO_Model.at[i+2, 'LOSA_dmd_SFWMM'] - M_var.LOSA_Supply[i+2]
M_var.Cut_back[i+2] = ctbk
#Calculate percentage of the demand that is not supplied for each day
if LO_Model.at[i+2, 'LOSA_dmd_SFWMM'] == 0:
DNS = 0
else:
DNS = (M_var.Cut_back[i+2] / LO_Model.at[i+2, 'LOSA_dmd_SFWMM'])*100
M_var.Dem_N_Sup[i+2] = DNS
# Calculate the Zone Code
#Note that to calculate the Zone Code in Dec 31 2020 we needed the WSM and breakpoint zones in 1/1/2021!
#Note Also that i = 0 in Stage indicates Dec 30 1964 while i = 0 in df_WSMs indicates Dec 31 1964!
M_var.Zone_Code[i+1] = LO_FNs.Zone_Code(M_var.Lake_Stage[i+1],df_WSMs.at[i+1, 'A'],df_WSMs.at[i+1, 'B'],df_WSMs.at[i+1, 'C'],df_WSMs.at[i+1, 'D3'],df_WSMs.at[i+1, 'D2'],df_WSMs.at[i+1, 'D1'],df_WSMs.at[i+1, 'D0'],df_WSMs.at[i+1, 'WSM1'])
#Generate the Zone Column based on the corresponding Zone Code.
M_var.LO_Zone[i+1] = LO_FNs.LO_Zone(M_var.Zone_Code[i+1])
M_var.Zone_D_Trib[i] = Dec_Tree_FNs.Zone_D_Trib(TC_LONINO_df.at[i, 'Tributary_Condition'],Pre_defined_Variables.Opt_NewTree)
M_var.Zone_D_stage[i] = Dec_Tree_FNs.Zone_D_stage(M_var.Lake_Stage[i+1],df_WSMs.at[i, 'C-b'])
M_var.Zone_D_Seas[i] = Dec_Tree_FNs.Zone_D_Seas(TC_LONINO_df.at[i, 'LONINO_Seasonal_Classes'],M_var.Zone_D_Trib[i],Pre_defined_Variables.Opt_NewTree)
M_var.Zone_D_MSeas[i] = Dec_Tree_FNs.Zone_D_MSeas(TC_LONINO_df.at[i, 'LONINO_MultiSeasonal_Classes'])
M_var.Zone_D_Branch_Code[i] = M_var.Zone_D_Trib[i]*1000 + M_var.Zone_D_stage[i]*100 + M_var.Zone_D_Seas[i]*10 + M_var.Zone_D_MSeas[i]*1
M_var.Zone_D_Rel_Code[i] = Dec_Tree_FNs.Zone_D_Rel_Code(M_var.Zone_D_Branch_Code[i],Pre_defined_Variables.Opt_DecTree)
M_var.Zone_C_Trib[i] = Dec_Tree_FNs.Zone_C_Trib(TC_LONINO_df.at[i, 'Tributary_Condition'],Pre_defined_Variables.Opt_NewTree)
M_var.Zone_C_Seas[i] = Dec_Tree_FNs.Zone_C_Seas(TC_LONINO_df.at[i, 'LONINO_Seasonal_Classes'],Pre_defined_Variables.Opt_NewTree)
M_var.Zone_C_MSeas[i] = Dec_Tree_FNs.Zone_C_MSeas(TC_LONINO_df.at[i, 'LONINO_MultiSeasonal_Classes'])
M_var.Zone_C_MetFcast[i] = Dec_Tree_FNs.Zone_C_MetFcast(M_var.Zone_C_Seas[i],TC_LONINO_df.at[i, 'LONINO_Seasonal_Classes'],Pre_defined_Variables.Zone_C_MetFcast_Indicator)
M_var.Zone_C_Branch_Code[i] = M_var.Zone_C_Trib[i]*1000 + M_var.Zone_C_MetFcast[i]*100 + M_var.Zone_C_Seas[i]*10 + M_var.Zone_C_MSeas[i]*1
M_var.Zone_C_Rel_Code[i] = Dec_Tree_FNs.Zone_C_Rel_Code(M_var.Zone_C_Branch_Code[i],Pre_defined_Variables.Opt_DecTree)
M_var.Zone_B_Trib[i] = Dec_Tree_FNs.Zone_B_Trib(TC_LONINO_df.at[i, 'Tributary_Condition'],Pre_defined_Variables.Opt_NewTree)
M_var.Zone_B_Stage[i] = Dec_Tree_FNs.Zone_B_Stage(M_var.Lake_Stage[i+1],Seasons.at[i, 'Season'])
M_var.Zone_B_Seas[i] = Dec_Tree_FNs.Zone_B_Seas(TC_LONINO_df.at[i, 'LONINO_Seasonal_Classes'])
M_var.Zone_B_Branch_Code[i] = M_var.Zone_B_Trib[i]*1000 + M_var.Zone_B_Stage[i]*100 + DecTree_df.at[i, 'Zone_B_MetFcast']*10 + M_var.Zone_B_Seas[i]*1
M_var.Zone_B_Rel_Code[i] = Dec_Tree_FNs.Zone_B_Rel_Code(M_var.Zone_B_Branch_Code[i],Pre_defined_Variables.Opt_DecTree)
M_var.DecTree_Relslevel[i+2] = LO_FNs.DecTree_Relslevel(M_var.Zone_Code[i+1],M_var.Zone_D_Rel_Code[i],M_var.Zone_C_Rel_Code[i],M_var.Zone_B_Rel_Code[i])
if i >= 3:
if startdate.month == LO_Model.at[i, 'date'].month and startdate.day == LO_Model.at[i, 'date'].day and (Pre_defined_Variables.CSflag == 0 or startdate.year == LO_Model.at[i, 'date'].year):
X2 = 'SimDay1'
else:
X2 = LO_Model.at[i, 'date'].date()
M_var.DayFlags[i] = X2
M_var.PlsDay[i+2] = LO_FNs.PlsDay(M_var.DayFlags[i+2],M_var.DecTree_Relslevel[i+2],Pre_defined_Variables.PlsDay_Switch)
M_var.Release_Level[i+2] = LO_FNs.Release_Level(M_var.Release_Level[i+1],M_var.Lake_Stage[i+1],TC_LONINO_df.at[i, 'Tributary_Condition'],M_var.PlsDay[i+2],M_var.Zone_Code[i+1],M_var.DecTree_Relslevel[i+2],Pre_defined_Variables.MaxQstgTrigger)
if i >= 6:
dh = M_var.Lake_Stage[i+1] - M_var.Lake_Stage[i-6]
M_var.dh_7days[i+1] = dh
M_var.ZoneCodeminus1Code[i+1] = LO_FNs.ZoneCodeminus1Code(M_var.Zone_Code[i+1],df_WSMs.at[i+1, 'WSM1'],df_WSMs.at[i+1, 'D0'],df_WSMs.at[i+1, 'D1'],df_WSMs.at[i+1, 'D2'],df_WSMs.at[i+1, 'D3'],df_WSMs.at[i+1, 'C'],df_WSMs.at[i+1, 'B'],df_WSMs.at[i+1, 'A'])
M_var.ZoneCodeCode[i+1] = LO_FNs.ZoneCodeCode(M_var.Zone_Code[i+1],df_WSMs.at[i+1, 'WSM1'],df_WSMs.at[i+1, 'D0'],df_WSMs.at[i+1, 'D1'],df_WSMs.at[i+1, 'D2'],df_WSMs.at[i+1, 'D3'],df_WSMs.at[i+1, 'C'],df_WSMs.at[i+1, 'B'],df_WSMs.at[i+1, 'A'])
M_var.Fraction_of_Zone_height[i+1] = LO_FNs.Fraction_of_Zone_height(M_var.Zone_Code[i+1],M_var.Lake_Stage[i+1],M_var.ZoneCodeminus1Code[i+1],M_var.ZoneCodeCode[i+1])
M_var.ReLevelCode_1[i+2] = LO_FNs.ReLevelCode_1(M_var.Release_Level[i+2],Pre_defined_Variables.dstar_D1,Pre_defined_Variables.dstar_D2,Pre_defined_Variables.dstar_D3,Pre_defined_Variables.dstar_C,Pre_defined_Variables.dstar_B)
M_var.ReLevelCode_2[i+2] = LO_FNs.ReLevelCode_2(M_var.Release_Level[i+2],Pre_defined_Variables.astar_D1,Pre_defined_Variables.astar_D2,Pre_defined_Variables.astar_D3,Pre_defined_Variables.astar_C,Pre_defined_Variables.astar_B)
M_var.ReLevelCode_3_S80[i+2] = LO_FNs.ReLevelCode_3_S80(M_var.Release_Level[i+2],Pre_defined_Variables.bstar_S80_D1,Pre_defined_Variables.bstar_S80_D2,Pre_defined_Variables.bstar_S80_D3,Pre_defined_Variables.bstar_S80_C,Pre_defined_Variables.bstar_S80_B)
M_var.Outlet2DS_Mult[i+2] = LO_FNs.Outlet2DS_Mult(Seasons.at[i, 'Season'],Seasons.at[i, 'Month'],M_var.dh_7days[i+1],M_var.ReLevelCode_1[i+2],M_var.Fraction_of_Zone_height[i+1],M_var.ReLevelCode_2[i+2],M_var.ReLevelCode_3_S80[i+2],Pre_defined_Variables.Opt_QregMult)
M_var.Outlet2DS_Mult_2[i+2] = LO_FNs.Outlet2DS_Mult_2(LO_Model.at[i+2, 'date'].month,LO_Model.at[i+2, 'date'].day,M_var.PlsDay[i+2],M_var.Outlet2DS_Mult[i+2-M_var.PlsDay[i+2]],M_var.Outlet2DS_Mult[i+2],Pre_defined_Variables.Opt_QregMult)
M_var.Outlet2DSRS[i+2] = LO_FNs.Outlet2DSRS(M_var.Release_Level[i+2],Data.S80_RegRelRates.at[0, 'Zone_D1'],S80avgL1,Data.Pulses.at[M_var.PlsDay[i+2]-1 if M_var.PlsDay[i+2]-1>=0 else len(Data.Pulses)-1, 'S-80_L1_%s'%Pre_defined_Variables.Schedule],M_var.Outlet2DS_Mult_2[i+2],Data.CE_SLE_turns.at[LO_Model.at[i+2, 'date'].year-Pre_defined_Variables.startyear, 'SLEturn'],Data.S80_RegRelRates.at[0, 'Zone_D2'],S80avgL2,Data.Pulses.at[M_var.PlsDay[i+2]-1 if M_var.PlsDay[i+2]-1>=0 else len(Data.Pulses)-1, 'S-80_L2_%s'%Pre_defined_Variables.Schedule],Data.S80_RegRelRates.at[0, 'Zone_D3'],S80avgL3,Data.Pulses.at[M_var.PlsDay[i+2]-1 if M_var.PlsDay[i+2]-1>=0 else len(Data.Pulses)-1, 'S-80_L3_%s'%Pre_defined_Variables.Schedule],Data.S80_RegRelRates.at[0, 'Zone_C'],Data.S80_RegRelRates.at[0, 'Zone_B'],Data.S80_RegRelRates.at[0, 'Zone_A'])
M_var.Outlet2USRG1[i+2] = max(0,M_var.Outlet2DSRS[i+2]-LO_Model.at[i+2, 'C44RO'])
M_var.Sum_Outlet2USRG1[i+2] = LO_FNs.Sum_Outlet2USRG1(LO_Model.at[i+2, 'date'].day,M_var.Outlet2USRG1[i+2])
M_var.Outlet2DSBS[i+2] = LO_FNs.Outlet2DSBS(M_var.Release_Level[i+2],M_var.Sum_Outlet2USRG1[i+2],VLOOKUP1_c[i],Outlet2_baseflow,Pre_defined_Variables.Option_S80Baseflow)
M_var.Outlet2USBK[i+2] = LO_FNs.Outlet2USBK(M_var.Lake_Stage[i+1],df_WSMs.at[i+1, 'D1'],M_var.Outlet2USRG[i+1],LO_Model.at[i+2, 'C44RO'],Data.SFWMM_Daily_Outputs.at[i+2, 'S308BK'],Pre_defined_Variables.Opt_S308,Pre_defined_Variables.S308BK_Const,Pre_defined_Variables.S308_BK_Thr)
M_var.ROeast[i+2] = LO_Model.at[i+2, 'C44RO'] - M_var.Outlet2USBK[i+2]
M_var.Outlet2USBS[i+2] = LO_FNs.Outlet2USBS(M_var.Outlet2DSBS[i+2],M_var.Outlet2USRG1[i+2],M_var.ROeast[i+2],Pre_defined_Variables.Option_S80Baseflow)
M_var.Sum_Outlet2USBK[i+2] = LO_FNs.Sum_Outlet2USBK(LO_Model.at[i+2, 'date'].day,M_var.Outlet2USBK[i+2])
M_var.Outlet2USRG_Code[i+2] = LO_FNs.Outlet2USRG_Code(M_var.Outlet2USRG1[i+2],M_var.Outlet2USBS[i+2],Data.SFWMM_Daily_Outputs.at[i+2, 'S308RG'],Data.SFWMM_Daily_Outputs.at[i+2, 'STEST'],Pre_defined_Variables.Option_RegS77S308)
if Model_Config.Sim_type == 0:
M_var.Outlet2USRG[i+2] = LO_FNs.Outlet2USRG(M_var.Outlet2USRG_Code[i+2],Data.SFWMM_Daily_Outputs.at[i+2, 'S308RG'],Data.SFWMM_Daily_Outputs.at[i+2, 'STEST'],Pre_defined_Variables.Opt_S308,Pre_defined_Variables.S308RG_Const)
else:
if M_var.Lake_Stage[i+1] >= 18:
M_var.Outlet2USRG[i+2] = 7200
elif M_var.Lake_Stage[i+1] <= 8:
M_var.Outlet2USRG[i+2] = 0
elif (TP_Lake_S[i] <= P_1) and (date_rng_6[i+2].month in [1,2,3,4,11,12]):
M_var.Outlet2USRG[i+2] = S308_DV[(date_rng_6[i+2].month)-1]
elif (TP_Lake_S[i] <= P_2) and (date_rng_6[i+2].month in [5,6,7,8,9,10]):
M_var.Outlet2USRG[i+2] = S308_DV[(date_rng_6[i+2].month)-1]
else:
M_var.Outlet2USRG[i+2] = 0
M_var.Outlet2DS[i+2] = LO_FNs.S80(M_var.ROeast[i+2],M_var.Outlet2USRG[i+2],Data.SFWMM_Daily_Outputs.at[i+2, 'S80'],Pre_defined_Variables.S80_Const)
M_var.ReLevelCode_3_S77[i+2] = LO_FNs.ReLevelCode_3_S77(M_var.Release_Level[i+2],Pre_defined_Variables.bstar_S77_D1,Pre_defined_Variables.bstar_S77_D2,Pre_defined_Variables.bstar_S77_D3,Pre_defined_Variables.bstar_S77_C,Pre_defined_Variables.bstar_S77_B)
M_var.Outlet1US_Mult[i+2] = LO_FNs.Outlet1US_Mult(Seasons.at[i, 'Season'],Seasons.at[i, 'Month'],M_var.dh_7days[i+1],M_var.ReLevelCode_1[i+2],M_var.Fraction_of_Zone_height[i+1],M_var.ReLevelCode_2[i+2],M_var.ReLevelCode_3_S77[i+2],Pre_defined_Variables.Opt_QregMult)
M_var.Outlet1US_Mult_2[i+2] = LO_FNs.Outlet1US_Mult_2(LO_Model.at[i+2, 'date'].month,LO_Model.at[i+2, 'date'].day,M_var.PlsDay[i+2],M_var.Outlet1US_Mult[i+2-M_var.PlsDay[i+2]],M_var.Outlet1US_Mult[i+2],Pre_defined_Variables.Opt_QregMult)
M_var.Outlet1USRS[i+2] = LO_FNs.Outlet1USRS(M_var.Release_Level[i+2],Data.S77_RegRelRates.at[0, 'Zone_D1'],S77avgL1,Data.Pulses.at[M_var.PlsDay[i+2]-1 if M_var.PlsDay[i+2]-1>=0 else len(Data.Pulses)-1, 'S-77_L1_%s'%Pre_defined_Variables.Schedule],M_var.Outlet1US_Mult_2[i+2],LO_Model.at[i+2, 'C43RO'],Data.CE_SLE_turns.at[LO_Model.at[i+2, 'date'].year-Pre_defined_Variables.startyear, 'CEturn'],Data.S77_RegRelRates.at[0, 'Zone_D2'],S77avgL2,Data.Pulses.at[M_var.PlsDay[i+2]-1 if M_var.PlsDay[i+2]-1>=0 else len(Data.Pulses)-1, 'S-77_L2_%s'%Pre_defined_Variables.Schedule],M_var.Zone_Code[i+1],Data.S77_RegRelRates.at[0, 'Zone_D3'],S77avgL3,Data.Pulses.at[M_var.PlsDay[i+2]-1 if M_var.PlsDay[i+2]-1>=0 else len(Data.Pulses)-1, 'S-77_L3_%s'%Pre_defined_Variables.Schedule],Data.S77_RegRelRates.at[0, 'Zone_C'],Data.S77_RegRelRates.at[0, 'Zone_B'],Data.S77_RegRelRates.at[0, 'Zone_A'],Pre_defined_Variables.Opt_Outlet1DSRG)
M_var.Sum_Outlet1USRS[i+2] = LO_FNs.Sum_Outlet1USRS(LO_Model.at[i+2, 'date'].day,M_var.Outlet1USRS[i+2])
M_var.Outlet1USBK[i+2] = LO_FNs.Outlet1USBK(M_var.Lake_Stage[i+1],M_var.Outlet1USRS[i+2],M_var.Outlet1USBSAP[i+1],M_var.Outlet1USEWS[i+1],LO_Model.at[i+2, 'C43RO'],Data.SFWMM_Daily_Outputs.at[i+2, 'S77BK'],Pre_defined_Variables.Outlet1USBK_Switch,Pre_defined_Variables.Outlet1USBK_Threshold)
M_var.ROwest[i+2] = LO_Model.at[i+2, 'C43RO'] - M_var.Outlet1USBK[i+2]
M_var.Outlet1DSBS[i+2] = LO_FNs.Outlet1DSBS(M_var.Release_Level[i+2],M_var.Sum_Outlet1USRS[i+2],VLOOKUP2_c[i],Outlet1_baseflow,Pre_defined_Variables.Option_S77Baseflow)
M_var.Outlet1USBS[i+2] = LO_FNs.Outlet1USBS(M_var.Outlet1DSBS[i+2],M_var.Outlet1USRS[i+2],M_var.ROwest[i+2],Pre_defined_Variables.Option_S77Baseflow)
#Define THC Class Normal or above
if i < (n_rows-2):
M_var.Post_Ap_Baseflow[i] = THC_Class(i,M_var.THC_Class_normal_or_above,M_var.Lake_O_Stage_AP,M_var.Lake_O_Schedule_Zone,M_var.LStgCorres,M_var.LowChance_Check,M_var.Outlet1USRS_AP,M_var.Outlet1USBS_AP,
M_var.Outlet1USRS_Pre_AP_S77_Baseflow,M_var.Forecast_D_Sal,M_var.n30d_mavg,M_var.n30davgForecast,M_var.LORS08_bf_rel,M_var.LDS_LC6_1,M_var.S_O,M_var.All_4,
M_var.Sabf,M_var.Swbf,M_var.Swbu,M_var.All_4andStage,M_var.All_4andStagein,M_var.P_AP_BF_Stg,M_var.Logic_test_1,M_var.Post_Ap_Baseflow,M_var.Outlet1USRSplusPreAPS77bsf,
M_var.AndEstNeedsLakeWater,M_var.AndLowChance61stagelessth11,M_var.ATHCnora,M_var.Choose_PAPEWS_1,M_var.Choose_PAPEWS_2,M_var.Post_AP_EWS,
M_var.Post_AP_Baseflow_EWS_cfs,AdapProt_df,M_var.Lake_Stage,M_var.Zone_Code,df_WSMs,Targ_Stg_df,M_var.Outlet1USRS,M_var.Outlet1USBS,Data.Estuary_needs_water,
Choose_1,M_var.WSM_Zone)['Post_Ap_Baseflow']
M_var.Post_AP_EWS[i] = THC_Class(i,M_var.THC_Class_normal_or_above,M_var.Lake_O_Stage_AP,M_var.Lake_O_Schedule_Zone,M_var.LStgCorres,M_var.LowChance_Check,M_var.Outlet1USRS_AP,M_var.Outlet1USBS_AP,
M_var.Outlet1USRS_Pre_AP_S77_Baseflow,M_var.Forecast_D_Sal,M_var.n30d_mavg,M_var.n30davgForecast,M_var.LORS08_bf_rel,M_var.LDS_LC6_1,M_var.S_O,M_var.All_4,
M_var.Sabf,M_var.Swbf,M_var.Swbu,M_var.All_4andStage,M_var.All_4andStagein,M_var.P_AP_BF_Stg,M_var.Logic_test_1,M_var.Post_Ap_Baseflow,M_var.Outlet1USRSplusPreAPS77bsf,
M_var.AndEstNeedsLakeWater,M_var.AndLowChance61stagelessth11,M_var.ATHCnora,M_var.Choose_PAPEWS_1,M_var.Choose_PAPEWS_2,M_var.Post_AP_EWS,
M_var.Post_AP_Baseflow_EWS_cfs,AdapProt_df,M_var.Lake_Stage,M_var.Zone_Code,df_WSMs,Targ_Stg_df,M_var.Outlet1USRS,M_var.Outlet1USBS,Data.Estuary_needs_water,
Choose_1,M_var.WSM_Zone)['Post_AP_EWS']
M_var.Outlet1USBSAP[i+2] = LO_FNs.Outlet1USBSAP(M_var.Outlet1USBS[i+2],M_var.Post_Ap_Baseflow[i],Pre_defined_Variables.Opt_AdapProt)
M_var.Outlet1USEWS[i+2] = LO_FNs.Outlet1USEWS(M_var.Post_AP_EWS[i],Data.SFWMM_Daily_Outputs.at[i+2, 'CAEST'],Pre_defined_Variables.Outlet1USEWS_Switch,Pre_defined_Variables.Opt_AdapProt)
if Model_Config.Sim_type == 0:
M_var.Outlet1USREG[i+2] = LO_FNs.Outlet1USREG(M_var.Outlet1USRS[i+2],M_var.Outlet1USBSAP[i+2],Data.SFWMM_Daily_Outputs.at[i+2, 'S77RG'],Pre_defined_Variables.Outlet1USREG_Switch,Pre_defined_Variables.Option_RegS77S308)
else:
if M_var.Lake_Stage[i+1] >= 18:
M_var.Outlet1USREG[i+2] = 7800
elif M_var.Lake_Stage[i+1] <= 8:
M_var.Outlet1USREG[i+2] = 0
elif (TP_Lake_S[i] <= P_1) and (date_rng_6[i+2].month in [1,2,3,4,11,12]):
M_var.Outlet1USREG[i+2] = S77_DV[(date_rng_6[i+2].month)-1]
elif (TP_Lake_S[i] <= P_2) and (date_rng_6[i+2].month in [5,6,7,8,9,10]):
M_var.Outlet1USREG[i+2] = S77_DV[(date_rng_6[i+2].month)-1]
else:
M_var.Outlet1USREG[i+2] = 0
M_var.Outlet1DS[i+2] = LO_FNs.Outlet1DS(M_var.Outlet1USREG[i+2],M_var.Outlet1USEWS[i+2],M_var.ROwest[i+2],Data.SFWMM_Daily_Outputs.at[i+2, 'S79'],Pre_defined_Variables.Outlet1DS_Switch)
M_var.TotRegEW[i+2] = (M_var.Outlet1USREG[i+2] + M_var.Outlet2USRG[i+2])*1.9835
M_var.Choose_WCA[i+2] = LO_FNs.Choose_WCA(Data.SFWMM_Daily_Outputs.at[i+2, 'RegWCA'],Pre_defined_Variables.Option_RegWCA,Pre_defined_Variables.Constant_RegWCA)
M_var.RegWCA[i+2] = min(Pre_defined_Variables.MaxCap_RegWCA , Pre_defined_Variables.Multiplier_RegWCA*M_var.Choose_WCA[i+2])
M_var.Choose_L8C51[i+2] = LO_FNs.Choose_L8C51(Data.SFWMM_Daily_Outputs.at[i+2, 'RegL8C51'],Pre_defined_Variables.Option_RegL8C51,Pre_defined_Variables.Constant_RegL8C51)
M_var.RegL8C51[i+2] = min(Pre_defined_Variables.MaxCap_RegL8C51 , Pre_defined_Variables.Multiplier_RegL8C51*M_var.Choose_L8C51[i+2])
M_var.TotRegSo[i+2] = (M_var.RegWCA[i+2] + M_var.RegL8C51[i+2]) * 1.9835
M_var.Stage2ar[i+2] = Stg_Sto_Ar.stg2ar(M_var.Lake_Stage[i+1],0)
M_var.Stage2marsh[i+2] = Stg_Sto_Ar.stg2mar(M_var.Lake_Stage[i+1],0)
M_var.RF[i+2] = Data.RF_Vol.at[i+2, 'RF_acft']
M_var.ET[i+2] = LO_FNs.ET(Data.SFWMM_Daily_Outputs.at[i+2, 'et_dry'],M_var.Stage2ar[i+2],Data.SFWMM_Daily_Outputs.at[i+2, 'et_litoral'],M_var.Stage2marsh[i+2],Data.SFWMM_Daily_Outputs.at[i+2, 'et_open'],Data.ET_Vol.at[i+2, 'ETVol_acft'],Pre_defined_Variables.ET_Switch)
M_var.Choose_WSA_1[i+2] = LO_FNs.Choose_WSA_1(df_WSMs.at[i+2, 'WSM1'],Pre_defined_Variables.Opt_WSA,Pre_defined_Variables.WSAtrig2,Pre_defined_Variables.WSAoff2)
M_var.Choose_WSA_2[i+2] = LO_FNs.Choose_WSA_2(df_WSMs.at[i+2, 'WSM1'],Pre_defined_Variables.Opt_WSA,Pre_defined_Variables.WSAtrig1,Pre_defined_Variables.WSAoff1)
M_var.WSA_MIA[i+2] = LO_FNs.WSA_MIA(WCA_Stages_df.at[i, 'Are WCA stages too low?'],TC_LONINO_df.at[i, 'LONINO_Seasonal_Classes'],M_var.Lake_Stage[i+1],M_var.Choose_WSA_1[i+2],Data.EAA_MIA_RUNOFF.at[i, 'MIA'],Data.EAA_MIA_RUNOFF.at[i, 'S3PMP'],M_var.Choose_WSA_2[i+2],Pre_defined_Variables.Opt_WSA,Pre_defined_Variables.WSA_THC,Pre_defined_Variables.MIAcap2,Pre_defined_Variables.MIAcap1)
M_var.WSA_NNR[i+2] = LO_FNs.WSA_NNR(WCA_Stages_df.at[i, 'Are WCA stages too low?'],TC_LONINO_df.at[i, 'LONINO_Seasonal_Classes'],M_var.Lake_Stage[i+1],M_var.Choose_WSA_1[i+2],Data.EAA_MIA_RUNOFF.at[i, 'NNR'],Data.EAA_MIA_RUNOFF.at[i, 'S2PMP'],M_var.Choose_WSA_2[i+2],Pre_defined_Variables.Opt_WSA,Pre_defined_Variables.WSA_THC,Pre_defined_Variables.NNRcap2,Pre_defined_Variables.NNRcap1)
M_var.DSto[i+2] = M_var.NI_Supply[i+2] + M_var.RF[i+2] - M_var.ET[i+2] + 1.9835*(M_var.Outlet2USBK[i+2]\
+ M_var.Outlet1USBK[i+2] + M_var.WSA_MIA[i+2] + M_var.WSA_NNR[i+2]\
- M_var.Outlet1USEWS[i+2]) - M_var.TotRegEW[i+2] - M_var.TotRegSo[i+2] + Storage_dev[i+2]
M_var.Storage[i+2] = LO_FNs.Storage(M_var.DayFlags[i+2],M_var.Storage[i],StartStorage,M_var.Storage[i+1],M_var.DSto[i+2])
M_var.Lake_Stage[i+2] = LO_FNs.Lake_Stage(Stg_Sto_Ar.stg2sto(M_var.Storage[i+2],1),Data.SFWMM_Daily_Outputs.at[i+2, 'EOD Stg(ft,NGVD)'],Pre_defined_Variables.Option_Stage)
# if M_var.Lake_Stage[i+2] >= 18:
#################################################################################################################################################################
Q_O[i+2] = (M_var.Outlet1USEWS[i+2] *0.028316847 + ((M_var.TotRegEW[i+2] + M_var.TotRegSo[i+2])/70.0456)) * 3600 * 24
if Storage_dev[i] >= 0:
Q_I_M[i] = Q_I[i] + Storage_dev[i] * 1233.48 #m3/d
Q_O_M[i] = Q_O[i]
L_ext_M[i] = L_ext[i] + Q_I_M[i] * TP_Lake_N[i]
else:
Q_O_M[i] = Q_O[i] - Storage_dev[i] * 1233.48 #m3/d
Q_I_M[i] = Q_I[i]
L_ext_M[i] = L_ext[i]
Q_N2S[i] = (Q_I_M[i] + Q_O_M[i])/2
M_var.Stage2ar[i+2] = Stg_Sto_Ar.stg2ar(M_var.Lake_Stage[i+2],0)
LO_WD[i] = M_var.Lake_Stage[i]*0.3048 - LO_BL
Lake_O_Storage_N[i] = M_var.Storage[i] * TP_Variables.N_Per * 4046.85642 * 0.305 #m3
Lake_O_Storage_S[i] = M_var.Storage[i] * TP_Variables.S_Per * 4046.85642 * 0.305 #m3
Lake_O_A_N[i] = M_var.Stage2ar[i] * TP_Variables.N_Per * 4046.85642 #m2
Lake_O_A_S[i] = M_var.Stage2ar[i] * TP_Variables.S_Per * 4046.85642 #m2
Lake_O_A_M_N[i] = Lake_O_A_N[i] * TP_Variables.A_Mud_N/(TP_Variables.A_Mud_N+TP_Variables.A_Sand_N+TP_Variables.A_Rock_N+TP_Variables.A_Peat_N)
Lake_O_A_S_N[i] = Lake_O_A_N[i] * TP_Variables.A_Sand_N/(TP_Variables.A_Mud_N+TP_Variables.A_Sand_N+TP_Variables.A_Rock_N+TP_Variables.A_Peat_N)
Lake_O_A_R_N[i] = Lake_O_A_N[i] * TP_Variables.A_Rock_N/(TP_Variables.A_Mud_N+TP_Variables.A_Sand_N+TP_Variables.A_Rock_N+TP_Variables.A_Peat_N)
Lake_O_A_P_N[i] = Lake_O_A_N[i] * TP_Variables.A_Peat_N/(TP_Variables.A_Mud_N+TP_Variables.A_Sand_N+TP_Variables.A_Rock_N+TP_Variables.A_Peat_N)
Lake_O_A_M_S[i] = Lake_O_A_S[i] * TP_Variables.A_Mud_S/(TP_Variables.A_Mud_S+TP_Variables.A_Sand_S+TP_Variables.A_Rock_S+TP_Variables.A_Peat_S)
Lake_O_A_S_S[i] = Lake_O_A_S[i] * TP_Variables.A_Sand_S/(TP_Variables.A_Mud_S+TP_Variables.A_Sand_S+TP_Variables.A_Rock_S+TP_Variables.A_Peat_S)
Lake_O_A_R_S[i] = Lake_O_A_S[i] * TP_Variables.A_Rock_S/(TP_Variables.A_Mud_S+TP_Variables.A_Sand_S+TP_Variables.A_Rock_S+TP_Variables.A_Peat_S)
Lake_O_A_P_S[i] = Lake_O_A_S[i] * TP_Variables.A_Peat_S/(TP_Variables.A_Mud_S+TP_Variables.A_Sand_S+TP_Variables.A_Rock_S+TP_Variables.A_Peat_S)
DIP_Lake_N[i] = TP_MBFR.DIP_Lake(TP_Lake_N[i])
DIP_Lake_S[i] = TP_MBFR.DIP_Lake(TP_Lake_S[i])
v_settle_N_c[i] = (R*g*d_c**2)/(C_1_c*nu_d[i]+(0.75*C_2_c*R*g*d_c**3)**0.5)
v_settle_N_s[i] = (R*g*d_s**2)/(C_1_s*nu_d[i]+(0.75*C_2_s*R*g*d_s**3)**0.5)
v_settle_N[i] = v_settle_N_c[i]*((TP_Variables.A_Mud_N+TP_Variables.A_Peat_N)/TP_Variables.A_N) + v_settle_N_s[i]*((TP_Variables.A_Sand_N + TP_Variables.A_Rock_N)/TP_Variables.A_N)
v_settle_S_c[i] = (R*g*d_c**2)/(C_1_c*nu_d[i]+(0.75*C_2_c*R*g*d_c**3)**0.5)
v_settle_S_s[i] = (R*g*d_s**2)/(C_1_s*nu_d[i]+(0.75*C_2_s*R*g*d_s**3)**0.5)
v_settle_S[i] = v_settle_S_c[i]*((TP_Variables.A_Mud_S+TP_Variables.A_Peat_S)/TP_Variables.A_S) + v_settle_S_s[i]*((TP_Variables.A_Sand_S + TP_Variables.A_Rock_S)/TP_Variables.A_S)
J_des_M_N[i] = TP_MBFR.Des_flux(Γ_M_N[i],Mass_sed_M_N,TP_Variables.K_des_M)
J_des_S_N[i] = TP_MBFR.Des_flux(Γ_S_N[i],Mass_sed_S_N,TP_Variables.K_des_S)
J_des_R_N[i] = TP_MBFR.Des_flux(Γ_R_N[i],Mass_sed_R_N,TP_Variables.K_des_R)
J_des_P_N[i] = TP_MBFR.Des_flux(Γ_P_N[i],Mass_sed_P_N,TP_Variables.K_des_P)
J_des_M_S[i] = TP_MBFR.Des_flux(Γ_M_S[i],Mass_sed_M_S,TP_Variables.K_des_M)
J_des_S_S[i] = TP_MBFR.Des_flux(Γ_S_S[i],Mass_sed_S_S,TP_Variables.K_des_S)
J_des_R_S[i] = TP_MBFR.Des_flux(Γ_R_S[i],Mass_sed_R_S,TP_Variables.K_des_R)
J_des_P_S[i] = TP_MBFR.Des_flux(Γ_P_S[i],Mass_sed_P_S,TP_Variables.K_des_P)
J_ads_M_N[i] = TP_MBFR.Ads_flux(DIP_pore_M_N[i],Γ_M_N[i],Mass_sed_M_N,TP_Variables.K_ads_M,TP_Variables.Γ_inf)
J_ads_S_N[i] = TP_MBFR.Ads_flux(DIP_pore_S_N[i],Γ_S_N[i],Mass_sed_S_N,TP_Variables.K_ads_S,TP_Variables.Γ_inf)
J_ads_R_N[i] = TP_MBFR.Ads_flux(DIP_pore_R_N[i],Γ_R_N[i],Mass_sed_R_N,TP_Variables.K_ads_R,TP_Variables.Γ_inf)
J_ads_P_N[i] = TP_MBFR.Ads_flux(DIP_pore_P_N[i],Γ_P_N[i],Mass_sed_P_N,TP_Variables.K_ads_P,TP_Variables.Γ_inf)
J_ads_M_S[i] = TP_MBFR.Ads_flux(DIP_pore_M_S[i],Γ_M_S[i],Mass_sed_M_S,TP_Variables.K_ads_M,TP_Variables.Γ_inf)
J_ads_S_S[i] = TP_MBFR.Ads_flux(DIP_pore_S_S[i],Γ_S_S[i],Mass_sed_S_S,TP_Variables.K_ads_S,TP_Variables.Γ_inf)
J_ads_R_S[i] = TP_MBFR.Ads_flux(DIP_pore_R_S[i],Γ_R_S[i],Mass_sed_R_S,TP_Variables.K_ads_R,TP_Variables.Γ_inf)
J_ads_P_S[i] = TP_MBFR.Ads_flux(DIP_pore_P_S[i],Γ_P_S[i],Mass_sed_P_S,TP_Variables.K_ads_P,TP_Variables.Γ_inf)
J_sedburial_M_N[i] = TP_MBFR.Sed_burial_flux(P_sed_M_N[i],TP_Variables.Bulk_density_M,TP_Variables.A_Mud_N,TP_Variables.v_burial_M,TP_Variables.Per_H2O_M)
J_sedburial_S_N[i] = TP_MBFR.Sed_burial_flux(P_sed_S_N[i],TP_Variables.Bulk_density_S,TP_Variables.A_Sand_N,TP_Variables.v_burial_S,TP_Variables.Per_H2O_S)
J_sedburial_R_N[i] = TP_MBFR.Sed_burial_flux(P_sed_R_N[i],TP_Variables.Bulk_density_R,TP_Variables.A_Rock_N,TP_Variables.v_burial_R,TP_Variables.Per_H2O_R)
J_sedburial_P_N[i] = TP_MBFR.Sed_burial_flux(P_sed_P_N[i],TP_Variables.Bulk_density_P,TP_Variables.A_Peat_N,TP_Variables.v_burial_P,TP_Variables.Per_H2O_P)
J_sedburial_M_S[i] = TP_MBFR.Sed_burial_flux(P_sed_M_S[i],TP_Variables.Bulk_density_M,TP_Variables.A_Mud_S,TP_Variables.v_burial_M,TP_Variables.Per_H2O_M)
J_sedburial_S_S[i] = TP_MBFR.Sed_burial_flux(P_sed_S_S[i],TP_Variables.Bulk_density_S,TP_Variables.A_Sand_S,TP_Variables.v_burial_S,TP_Variables.Per_H2O_S)
J_sedburial_R_S[i] = TP_MBFR.Sed_burial_flux(P_sed_R_S[i],TP_Variables.Bulk_density_R,TP_Variables.A_Rock_S,TP_Variables.v_burial_R,TP_Variables.Per_H2O_R)
J_sedburial_P_S[i] = TP_MBFR.Sed_burial_flux(P_sed_P_S[i],TP_Variables.Bulk_density_P,TP_Variables.A_Peat_S,TP_Variables.v_burial_P,TP_Variables.Per_H2O_P)
Sed_Resusp_M_N[i] = ((E_0/Td**E_1)*((W_SS[i]-Crtcl_ShStr)/Crtcl_ShStr)**E_2)*10/LO_WD[i]*P_sed_M_N[i] if W_SS[i] > Crtcl_ShStr else 0
Sed_Resusp_S_N[i] = ((E_0/Td**E_1)*((W_SS[i]-Crtcl_ShStr)/Crtcl_ShStr)**E_2)*10/LO_WD[i]*P_sed_S_N[i] if W_SS[i] > Crtcl_ShStr else 0
Sed_Resusp_R_N[i] = ((E_0/Td**E_1)*((W_SS[i]-Crtcl_ShStr)/Crtcl_ShStr)**E_2)*10/LO_WD[i]*P_sed_R_N[i] if W_SS[i] > Crtcl_ShStr else 0
Sed_Resusp_P_N[i] = ((E_0/Td**E_1)*((W_SS[i]-Crtcl_ShStr)/Crtcl_ShStr)**E_2)*10/LO_WD[i]*P_sed_P_N[i] if W_SS[i] > Crtcl_ShStr else 0
Sed_Resusp_M_S[i] = ((E_0/Td**E_1)*((W_SS[i]-Crtcl_ShStr)/Crtcl_ShStr)**E_2)*10/LO_WD[i]*P_sed_M_S[i] if W_SS[i] > Crtcl_ShStr else 0
Sed_Resusp_S_S[i] = ((E_0/Td**E_1)*((W_SS[i]-Crtcl_ShStr)/Crtcl_ShStr)**E_2)*10/LO_WD[i]*P_sed_S_S[i] if W_SS[i] > Crtcl_ShStr else 0
Sed_Resusp_R_S[i] = ((E_0/Td**E_1)*((W_SS[i]-Crtcl_ShStr)/Crtcl_ShStr)**E_2)*10/LO_WD[i]*P_sed_R_S[i] if W_SS[i] > Crtcl_ShStr else 0
Sed_Resusp_P_S[i] = ((E_0/Td**E_1)*((W_SS[i]-Crtcl_ShStr)/Crtcl_ShStr)**E_2)*10/LO_WD[i]*P_sed_P_S[i] if W_SS[i] > Crtcl_ShStr else 0
P_sed_M_N[i+1] = TP_MBFR.P_sed(Lake_O_A_M_N[i],TP_Lake_N[i],DIP_Lake_N[i],J_sedburial_M_N[i],P_sed_M_N[i],Mass_sed_M_N,TP_Variables.K_decomp_M,v_settle_N[i]) - Sed_Resusp_M_N[i]*Lake_O_Storage_N[i]/Mass_sed_M_N if TP_MBFR.P_sed(Lake_O_A_M_N[i],TP_Lake_N[i],DIP_Lake_N[i],J_sedburial_M_N[i],P_sed_M_N[i],Mass_sed_M_N,TP_Variables.K_decomp_M,v_settle_N[i]) - Sed_Resusp_M_N[i]*Lake_O_Storage_N[i]/Mass_sed_M_N > 0 else 0
P_sed_S_N[i+1] = TP_MBFR.P_sed(Lake_O_A_S_N[i],TP_Lake_N[i],DIP_Lake_N[i],J_sedburial_S_N[i],P_sed_S_N[i],Mass_sed_S_N,TP_Variables.K_decomp_S,v_settle_N[i]) - Sed_Resusp_S_N[i]*Lake_O_Storage_N[i]/Mass_sed_S_N if TP_MBFR.P_sed(Lake_O_A_S_N[i],TP_Lake_N[i],DIP_Lake_N[i],J_sedburial_S_N[i],P_sed_S_N[i],Mass_sed_S_N,TP_Variables.K_decomp_S,v_settle_N[i]) - Sed_Resusp_S_N[i]*Lake_O_Storage_N[i]/Mass_sed_S_N > 0 else 0
P_sed_R_N[i+1] = TP_MBFR.P_sed(Lake_O_A_R_N[i],TP_Lake_N[i],DIP_Lake_N[i],J_sedburial_R_N[i],P_sed_R_N[i],Mass_sed_R_N,TP_Variables.K_decomp_R,v_settle_N[i]) - Sed_Resusp_R_N[i]*Lake_O_Storage_N[i]/Mass_sed_R_N if TP_MBFR.P_sed(Lake_O_A_R_N[i],TP_Lake_N[i],DIP_Lake_N[i],J_sedburial_R_N[i],P_sed_R_N[i],Mass_sed_R_N,TP_Variables.K_decomp_R,v_settle_N[i]) - Sed_Resusp_R_N[i]*Lake_O_Storage_N[i]/Mass_sed_R_N > 0 else 0
P_sed_P_N[i+1] = TP_MBFR.P_sed(Lake_O_A_P_N[i],TP_Lake_N[i],DIP_Lake_N[i],J_sedburial_P_N[i],P_sed_P_N[i],Mass_sed_P_N,TP_Variables.K_decomp_P,v_settle_N[i]) - Sed_Resusp_P_N[i]*Lake_O_Storage_N[i]/Mass_sed_P_N if TP_MBFR.P_sed(Lake_O_A_P_N[i],TP_Lake_N[i],DIP_Lake_N[i],J_sedburial_P_N[i],P_sed_P_N[i],Mass_sed_P_N,TP_Variables.K_decomp_P,v_settle_N[i]) - Sed_Resusp_P_N[i]*Lake_O_Storage_N[i]/Mass_sed_P_N > 0 else 0
P_sed_M_S[i+1] = TP_MBFR.P_sed(Lake_O_A_M_S[i],TP_Lake_S[i],DIP_Lake_S[i],J_sedburial_M_S[i],P_sed_M_S[i],Mass_sed_M_S,TP_Variables.K_decomp_M,v_settle_S[i]) - Sed_Resusp_M_S[i]*Lake_O_Storage_S[i]/Mass_sed_M_S if TP_MBFR.P_sed(Lake_O_A_M_S[i],TP_Lake_S[i],DIP_Lake_S[i],J_sedburial_M_S[i],P_sed_M_S[i],Mass_sed_M_S,TP_Variables.K_decomp_M,v_settle_S[i]) - Sed_Resusp_M_S[i]*Lake_O_Storage_S[i]/Mass_sed_M_S > 0 else 0
P_sed_S_S[i+1] = TP_MBFR.P_sed(Lake_O_A_S_S[i],TP_Lake_S[i],DIP_Lake_S[i],J_sedburial_S_S[i],P_sed_S_S[i],Mass_sed_S_S,TP_Variables.K_decomp_S,v_settle_S[i]) - Sed_Resusp_S_S[i]*Lake_O_Storage_S[i]/Mass_sed_S_S if TP_MBFR.P_sed(Lake_O_A_S_S[i],TP_Lake_S[i],DIP_Lake_S[i],J_sedburial_S_S[i],P_sed_S_S[i],Mass_sed_S_S,TP_Variables.K_decomp_S,v_settle_S[i]) - Sed_Resusp_S_S[i]*Lake_O_Storage_S[i]/Mass_sed_S_S > 0 else 0
P_sed_R_S[i+1] = TP_MBFR.P_sed(Lake_O_A_R_S[i],TP_Lake_S[i],DIP_Lake_S[i],J_sedburial_R_S[i],P_sed_R_S[i],Mass_sed_R_S,TP_Variables.K_decomp_R,v_settle_S[i]) - Sed_Resusp_R_S[i]*Lake_O_Storage_S[i]/Mass_sed_R_S if TP_MBFR.P_sed(Lake_O_A_R_S[i],TP_Lake_S[i],DIP_Lake_S[i],J_sedburial_R_S[i],P_sed_R_S[i],Mass_sed_R_S,TP_Variables.K_decomp_R,v_settle_S[i]) - Sed_Resusp_R_S[i]*Lake_O_Storage_S[i]/Mass_sed_R_S > 0 else 0
P_sed_P_S[i+1] = TP_MBFR.P_sed(Lake_O_A_P_S[i],TP_Lake_S[i],DIP_Lake_S[i],J_sedburial_P_S[i],P_sed_P_S[i],Mass_sed_P_S,TP_Variables.K_decomp_P,v_settle_S[i]) - Sed_Resusp_P_S[i]*Lake_O_Storage_S[i]/Mass_sed_P_S if TP_MBFR.P_sed(Lake_O_A_P_S[i],TP_Lake_S[i],DIP_Lake_S[i],J_sedburial_P_S[i],P_sed_P_S[i],Mass_sed_P_S,TP_Variables.K_decomp_P,v_settle_S[i]) - Sed_Resusp_P_S[i]*Lake_O_Storage_S[i]/Mass_sed_P_S > 0 else 0
J_Γburial_M_N[i] = TP_MBFR.Sor_P_burialflux(Γ_M_N[i],TP_Variables.Bulk_density_M,TP_Variables.A_Mud_N,TP_Variables.v_burial_M,TP_Variables.Per_H2O_M)
J_Γburial_S_N[i] = TP_MBFR.Sor_P_burialflux(Γ_S_N[i],TP_Variables.Bulk_density_S,TP_Variables.A_Sand_N,TP_Variables.v_burial_S,TP_Variables.Per_H2O_S)
J_Γburial_R_N[i] = TP_MBFR.Sor_P_burialflux(Γ_R_N[i],TP_Variables.Bulk_density_R,TP_Variables.A_Rock_N,TP_Variables.v_burial_R,TP_Variables.Per_H2O_R)
J_Γburial_P_N[i] = TP_MBFR.Sor_P_burialflux(Γ_P_N[i],TP_Variables.Bulk_density_P,TP_Variables.A_Peat_N,TP_Variables.v_burial_P,TP_Variables.Per_H2O_P)
J_Γburial_M_S[i] = TP_MBFR.Sor_P_burialflux(Γ_M_S[i],TP_Variables.Bulk_density_M,TP_Variables.A_Mud_S,TP_Variables.v_burial_M,TP_Variables.Per_H2O_M)
J_Γburial_S_S[i] = TP_MBFR.Sor_P_burialflux(Γ_S_S[i],TP_Variables.Bulk_density_S,TP_Variables.A_Sand_S,TP_Variables.v_burial_S,TP_Variables.Per_H2O_S)
J_Γburial_R_S[i] = TP_MBFR.Sor_P_burialflux(Γ_R_S[i],TP_Variables.Bulk_density_R,TP_Variables.A_Rock_S,TP_Variables.v_burial_R,TP_Variables.Per_H2O_R)
J_Γburial_P_S[i] = TP_MBFR.Sor_P_burialflux(Γ_P_S[i],TP_Variables.Bulk_density_P,TP_Variables.A_Peat_S,TP_Variables.v_burial_P,TP_Variables.Per_H2O_P)
Γ_M_N[i+1] = TP_MBFR.Sor_P_conc(J_ads_M_N[i],J_des_M_N[i],J_Γburial_M_N[i],Γ_M_N[i],Mass_sed_M_N) if TP_MBFR.Sor_P_conc(J_ads_M_N[i],J_des_M_N[i],J_Γburial_M_N[i],Γ_M_N[i],Mass_sed_M_N) > 0 else 0
Γ_S_N[i+1] = TP_MBFR.Sor_P_conc(J_ads_S_N[i],J_des_S_N[i],J_Γburial_S_N[i],Γ_S_N[i],Mass_sed_S_N) if TP_MBFR.Sor_P_conc(J_ads_S_N[i],J_des_S_N[i],J_Γburial_S_N[i],Γ_S_N[i],Mass_sed_S_N) > 0 else 0
Γ_R_N[i+1] = TP_MBFR.Sor_P_conc(J_ads_R_N[i],J_des_R_N[i],J_Γburial_R_N[i],Γ_R_N[i],Mass_sed_R_N) if TP_MBFR.Sor_P_conc(J_ads_R_N[i],J_des_R_N[i],J_Γburial_R_N[i],Γ_R_N[i],Mass_sed_R_N) > 0 else 0
Γ_P_N[i+1] = TP_MBFR.Sor_P_conc(J_ads_P_N[i],J_des_P_N[i],J_Γburial_P_N[i],Γ_P_N[i],Mass_sed_P_N) if TP_MBFR.Sor_P_conc(J_ads_P_N[i],J_des_P_N[i],J_Γburial_P_N[i],Γ_P_N[i],Mass_sed_P_N) > 0 else 0
Γ_M_S[i+1] = TP_MBFR.Sor_P_conc(J_ads_M_S[i],J_des_M_S[i],J_Γburial_M_S[i],Γ_M_S[i],Mass_sed_M_S) if TP_MBFR.Sor_P_conc(J_ads_M_S[i],J_des_M_S[i],J_Γburial_M_S[i],Γ_M_S[i],Mass_sed_M_S) > 0 else 0
Γ_S_S[i+1] = TP_MBFR.Sor_P_conc(J_ads_S_S[i],J_des_S_S[i],J_Γburial_S_S[i],Γ_S_S[i],Mass_sed_S_S) if TP_MBFR.Sor_P_conc(J_ads_S_S[i],J_des_S_S[i],J_Γburial_S_S[i],Γ_S_S[i],Mass_sed_S_S) > 0 else 0
Γ_R_S[i+1] = TP_MBFR.Sor_P_conc(J_ads_R_S[i],J_des_R_S[i],J_Γburial_R_S[i],Γ_R_S[i],Mass_sed_R_S) if TP_MBFR.Sor_P_conc(J_ads_R_S[i],J_des_R_S[i],J_Γburial_R_S[i],Γ_R_S[i],Mass_sed_R_S) > 0 else 0
Γ_P_S[i+1] = TP_MBFR.Sor_P_conc(J_ads_P_S[i],J_des_P_S[i],J_Γburial_P_S[i],Γ_P_S[i],Mass_sed_P_S) if TP_MBFR.Sor_P_conc(J_ads_P_S[i],J_des_P_S[i],J_Γburial_P_S[i],Γ_P_S[i],Mass_sed_P_S) > 0 else 0
J_decomp_M_N[i] = TP_MBFR.J_decomp(TP_Variables.K_decomp_M, P_sed_M_N[i], Mass_sed_M_N)
J_decomp_S_N[i] = TP_MBFR.J_decomp(TP_Variables.K_decomp_S, P_sed_S_N[i], Mass_sed_S_N)
J_decomp_R_N[i] = TP_MBFR.J_decomp(TP_Variables.K_decomp_R, P_sed_R_N[i], Mass_sed_R_N)
J_decomp_P_N[i] = TP_MBFR.J_decomp(TP_Variables.K_decomp_P, P_sed_P_N[i], Mass_sed_P_N)
J_decomp_M_S[i] = TP_MBFR.J_decomp(TP_Variables.K_decomp_M, P_sed_M_S[i], Mass_sed_M_S)
J_decomp_S_S[i] = TP_MBFR.J_decomp(TP_Variables.K_decomp_S, P_sed_S_S[i], Mass_sed_S_S)
J_decomp_R_S[i] = TP_MBFR.J_decomp(TP_Variables.K_decomp_R, P_sed_R_S[i], Mass_sed_R_S)
J_decomp_P_S[i] = TP_MBFR.J_decomp(TP_Variables.K_decomp_P, P_sed_P_S[i], Mass_sed_P_S)
DIP_pore_M_N[i+1] = TP_MBFR.DIP_pore(Θ_M,DIP_pore_M_N[i],DIP_Lake_N[i],J_des_M_N[i],J_ads_M_N[i],P_sed_M_N[i],Mass_sed_M_N,TP_Variables.v_diff_M,TP_Variables.A_Mud_N,TP_Variables.K_decomp_M,TP_Variables.v_burial_M) if TP_MBFR.DIP_pore(Θ_M,DIP_pore_M_N[i],DIP_Lake_N[i],J_des_M_N[i],J_ads_M_N[i],P_sed_M_N[i],Mass_sed_M_N,TP_Variables.v_diff_M,TP_Variables.A_Mud_N,TP_Variables.K_decomp_M,TP_Variables.v_burial_M) > 0 else 0
DIP_pore_S_N[i+1] = TP_MBFR.DIP_pore(Θ_S,DIP_pore_S_N[i],DIP_Lake_N[i],J_des_S_N[i],J_ads_S_N[i],P_sed_S_N[i],Mass_sed_S_N,TP_Variables.v_diff_S,TP_Variables.A_Sand_N,TP_Variables.K_decomp_S,TP_Variables.v_burial_S) if TP_MBFR.DIP_pore(Θ_S,DIP_pore_S_N[i],DIP_Lake_N[i],J_des_S_N[i],J_ads_S_N[i],P_sed_S_N[i],Mass_sed_S_N,TP_Variables.v_diff_S,TP_Variables.A_Sand_N,TP_Variables.K_decomp_S,TP_Variables.v_burial_S) > 0 else 0
DIP_pore_R_N[i+1] = TP_MBFR.DIP_pore(Θ_R,DIP_pore_R_N[i],DIP_Lake_N[i],J_des_R_N[i],J_ads_R_N[i],P_sed_R_N[i],Mass_sed_R_N,TP_Variables.v_diff_R,TP_Variables.A_Rock_N,TP_Variables.K_decomp_R,TP_Variables.v_burial_R) if TP_MBFR.DIP_pore(Θ_R,DIP_pore_R_N[i],DIP_Lake_N[i],J_des_R_N[i],J_ads_R_N[i],P_sed_R_N[i],Mass_sed_R_N,TP_Variables.v_diff_R,TP_Variables.A_Rock_N,TP_Variables.K_decomp_R,TP_Variables.v_burial_R) > 0 else 0
DIP_pore_P_N[i+1] = TP_MBFR.DIP_pore(Θ_P,DIP_pore_P_N[i],DIP_Lake_N[i],J_des_P_N[i],J_ads_P_N[i],P_sed_P_N[i],Mass_sed_P_N,TP_Variables.v_diff_P,TP_Variables.A_Peat_N,TP_Variables.K_decomp_P,TP_Variables.v_burial_P) if TP_MBFR.DIP_pore(Θ_P,DIP_pore_P_N[i],DIP_Lake_N[i],J_des_P_N[i],J_ads_P_N[i],P_sed_P_N[i],Mass_sed_P_N,TP_Variables.v_diff_P,TP_Variables.A_Peat_N,TP_Variables.K_decomp_P,TP_Variables.v_burial_P) > 0 else 0
DIP_pore_M_S[i+1] = TP_MBFR.DIP_pore(Θ_M,DIP_pore_M_S[i],DIP_Lake_S[i],J_des_M_S[i],J_ads_M_S[i],P_sed_M_S[i],Mass_sed_M_S,TP_Variables.v_diff_M,TP_Variables.A_Mud_S,TP_Variables.K_decomp_M,TP_Variables.v_burial_M) if TP_MBFR.DIP_pore(Θ_M,DIP_pore_M_S[i],DIP_Lake_S[i],J_des_M_S[i],J_ads_M_S[i],P_sed_M_S[i],Mass_sed_M_S,TP_Variables.v_diff_M,TP_Variables.A_Mud_S,TP_Variables.K_decomp_M,TP_Variables.v_burial_M) > 0 else 0
DIP_pore_S_S[i+1] = TP_MBFR.DIP_pore(Θ_S,DIP_pore_S_S[i],DIP_Lake_S[i],J_des_S_S[i],J_ads_S_S[i],P_sed_S_S[i],Mass_sed_S_S,TP_Variables.v_diff_S,TP_Variables.A_Sand_S,TP_Variables.K_decomp_S,TP_Variables.v_burial_S) if TP_MBFR.DIP_pore(Θ_S,DIP_pore_S_S[i],DIP_Lake_S[i],J_des_S_S[i],J_ads_S_S[i],P_sed_S_S[i],Mass_sed_S_S,TP_Variables.v_diff_S,TP_Variables.A_Sand_S,TP_Variables.K_decomp_S,TP_Variables.v_burial_S) > 0 else 0
DIP_pore_R_S[i+1] = TP_MBFR.DIP_pore(Θ_R,DIP_pore_R_S[i],DIP_Lake_S[i],J_des_R_S[i],J_ads_R_S[i],P_sed_R_S[i],Mass_sed_R_S,TP_Variables.v_diff_R,TP_Variables.A_Rock_S,TP_Variables.K_decomp_R,TP_Variables.v_burial_R) if TP_MBFR.DIP_pore(Θ_R,DIP_pore_R_S[i],DIP_Lake_S[i],J_des_R_S[i],J_ads_R_S[i],P_sed_R_S[i],Mass_sed_R_S,TP_Variables.v_diff_R,TP_Variables.A_Rock_S,TP_Variables.K_decomp_R,TP_Variables.v_burial_R) > 0 else 0
DIP_pore_P_S[i+1] = TP_MBFR.DIP_pore(Θ_P,DIP_pore_P_S[i],DIP_Lake_S[i],J_des_P_S[i],J_ads_P_S[i],P_sed_P_S[i],Mass_sed_P_S,TP_Variables.v_diff_P,TP_Variables.A_Peat_S,TP_Variables.K_decomp_P,TP_Variables.v_burial_P) if TP_MBFR.DIP_pore(Θ_P,DIP_pore_P_S[i],DIP_Lake_S[i],J_des_P_S[i],J_ads_P_S[i],P_sed_P_S[i],Mass_sed_P_S,TP_Variables.v_diff_P,TP_Variables.A_Peat_S,TP_Variables.K_decomp_P,TP_Variables.v_burial_P) > 0 else 0
Settling_P_N[i] = TP_MBFR.Sett_P(TP_Lake_N[i], DIP_Lake_N[i], Lake_O_A_N[i], Lake_O_Storage_N[i], v_settle_N[i])
Settling_P_S[i] = TP_MBFR.Sett_P(TP_Lake_S[i], DIP_Lake_S[i], Lake_O_A_S[i], Lake_O_Storage_S[i], v_settle_S[i])
P_diff_M_N[i] = TP_MBFR.Diff_P(TP_Variables.v_diff_M, DIP_pore_M_N[i], DIP_Lake_N[i], Θ_M, TP_Variables.A_Mud_N,Lake_O_Storage_N[i])
P_diff_S_N[i] = TP_MBFR.Diff_P(TP_Variables.v_diff_S, DIP_pore_S_N[i], DIP_Lake_N[i], Θ_S, TP_Variables.A_Sand_N,Lake_O_Storage_N[i])
P_diff_R_N[i] = TP_MBFR.Diff_P(TP_Variables.v_diff_R, DIP_pore_R_N[i], DIP_Lake_N[i], Θ_R, TP_Variables.A_Rock_N,Lake_O_Storage_N[i])
P_diff_P_N[i] = TP_MBFR.Diff_P(TP_Variables.v_diff_P, DIP_pore_P_N[i], DIP_Lake_N[i], Θ_P, TP_Variables.A_Peat_N,Lake_O_Storage_N[i])
P_diff_M_S[i] = TP_MBFR.Diff_P(TP_Variables.v_diff_M, DIP_pore_M_S[i], DIP_Lake_S[i], Θ_M, TP_Variables.A_Mud_S,Lake_O_Storage_S[i])
P_diff_S_S[i] = TP_MBFR.Diff_P(TP_Variables.v_diff_S, DIP_pore_S_S[i], DIP_Lake_S[i], Θ_S, TP_Variables.A_Sand_S,Lake_O_Storage_S[i])
P_diff_R_S[i] = TP_MBFR.Diff_P(TP_Variables.v_diff_R, DIP_pore_R_S[i], DIP_Lake_S[i], Θ_R, TP_Variables.A_Rock_S,Lake_O_Storage_S[i])
P_diff_P_S[i] = TP_MBFR.Diff_P(TP_Variables.v_diff_P, DIP_pore_P_S[i], DIP_Lake_S[i], Θ_P, TP_Variables.A_Peat_S,Lake_O_Storage_S[i])
# TP_N_to_S[i] = TP_MBFR.P_N_to_S(Q_N2S[i], TP_Lake_N[i], Lake_O_Storage_N[i])
# TP_Out[i] = TP_MBFR.P_Out(Q_O_M[i], TP_Lake_S[i], Lake_O_Storage_S[i])
TP_Lake_N[i+1] = TP_MBFR.TP_Lake_N(L_ext_M[i],Atm_Dep_N[i],Θ_M,Θ_S,Θ_R,Θ_P,DIP_pore_M_N[i],DIP_pore_S_N[i],DIP_pore_R_N[i],DIP_pore_P_N[i],DIP_Lake_N[i],Q_N2S[i],Lake_O_A_N[i],TP_Lake_N[i],Lake_O_Storage_N[i],TP_Variables.v_diff_M,TP_Variables.v_diff_S,TP_Variables.v_diff_R,TP_Variables.v_diff_P,v_settle_N[i]) + (Sed_Resusp_M_N[i]+Sed_Resusp_S_N[i]+Sed_Resusp_R_N[i]+Sed_Resusp_P_N[i]) if TP_MBFR.TP_Lake_N(L_ext_M[i],Atm_Dep_N[i],Θ_M,Θ_S,Θ_R,Θ_P,DIP_pore_M_N[i],DIP_pore_S_N[i],DIP_pore_R_N[i],DIP_pore_P_N[i],DIP_Lake_N[i],Q_N2S[i],Lake_O_A_N[i],TP_Lake_N[i],Lake_O_Storage_N[i],TP_Variables.v_diff_M,TP_Variables.v_diff_S,TP_Variables.v_diff_R,TP_Variables.v_diff_P,v_settle_N[i])+ (Sed_Resusp_M_N[i]+Sed_Resusp_S_N[i]+Sed_Resusp_R_N[i]+Sed_Resusp_P_N[i]) > 0 else 0
TP_Lake_S[i+1] = TP_MBFR.TP_Lake_S(Atm_Dep_S[i],Q_N2S[i],TP_Lake_N[i],Θ_M,Θ_S,Θ_R,Θ_P,DIP_pore_M_S[i],DIP_pore_S_S[i],DIP_pore_R_S[i],DIP_pore_P_S[i],DIP_Lake_S[i],Q_O_M[i],Lake_O_A_S[i],TP_Lake_S[i],Lake_O_Storage_S[i],TP_Variables.v_diff_M,TP_Variables.v_diff_S,TP_Variables.v_diff_R,TP_Variables.v_diff_P,v_settle_S[i]) + (Sed_Resusp_M_S[i]+Sed_Resusp_S_S[i]+Sed_Resusp_R_S[i]+Sed_Resusp_P_S[i]) if TP_MBFR.TP_Lake_S(Atm_Dep_S[i],Q_N2S[i],TP_Lake_N[i],Θ_M,Θ_S,Θ_R,Θ_P,DIP_pore_M_S[i],DIP_pore_S_S[i],DIP_pore_R_S[i],DIP_pore_P_S[i],DIP_Lake_S[i],Q_O_M[i],Lake_O_A_S[i],TP_Lake_S[i],Lake_O_Storage_S[i],TP_Variables.v_diff_M,TP_Variables.v_diff_S,TP_Variables.v_diff_R,TP_Variables.v_diff_P,v_settle_S[i])+ (Sed_Resusp_M_S[i]+Sed_Resusp_S_S[i]+Sed_Resusp_R_S[i]+Sed_Resusp_P_S[i]) > 0 else 0
TP_Lake_Mean[i+1] = ((TP_Lake_N[i+1] + TP_Lake_S[i+1])/2)
P_Load_Cal[i] = M_var.Outlet1USREG[i]*0.028316847*3600*24*TP_Lake_S[i] #mg/d P
P_Load_StL[i] = M_var.Outlet2USRG[i]*0.028316847*3600*24*TP_Lake_S[i] #mg/d P
P_Load_South[i] = M_var.TotRegSo[i]*1233.48*TP_Lake_S[i] #mg/d P
Output_df = pd.DataFrame(date_rng_2, columns=['Date']) #1/1/2008-12/31/2018
Output_df['Stage_LO'] = M_var.Lake_Stage[2:]
Output_df['S308_Q'] = M_var.Outlet2USRG[2:]
Output_df['S77_Q'] = M_var.Outlet1USREG[2:]
Output_df['Storage'] = M_var.Storage[2:]
Output_df['Cut_back'] = M_var.Cut_back[2:]
Output_df['P_Lake'] = TP_Lake_Mean
# Output_df['P_Lake_N'] = TP_Lake_N
# Output_df['P_Lake_S'] = TP_Lake_S
# Output_df['DIP_pore_M_N'] = DIP_pore_M_N
# Output_df['Q_N2S'] = Q_N2S
# Output_df['Lake_O_A_N'] = Lake_O_A_N
# Output_df['Lake_O_Storage_N'] = Lake_O_Storage_N
# Output_df['Sed_Resusp_M_N'] = Sed_Resusp_M_N
Output_df['P_Load_Cal'] = P_Load_Cal/1E9 #tons
Output_df['P_Load_StL'] = P_Load_StL/1E9 #tons
Output_df['P_Load_South'] = P_Load_South/1E9 #tons
return(Output_df)
Exported_File = LOONE_HydNut()
Exported_File.drop(index=Exported_File.index[-1],axis=0,inplace=True)
Exported_File.drop(index=Exported_File.index[-1],axis=0,inplace=True)
Exported_File['Stage_LO'] = Exported_File['Stage_LO'].astype(float)
Exported_File['Storage']=Exported_File['Storage'].astype(float)
Exported_File['S308_Q'] = Exported_File['S308_Q'].astype(float)
Exported_File['S77_Q'] = Exported_File['S77_Q'].astype(float)
Exported_File['Cut_back']=Exported_File['Cut_back'].astype(float)
Exported_File['P_Lake']=pd.to_numeric(Exported_File['P_Lake'])
# Exported_File['P_Lake_N']=pd.to_numeric(Exported_File['P_Lake_N'])
# Exported_File['P_Lake_S']=pd.to_numeric(Exported_File['P_Lake_S'])
# Exported_File['DIP_pore_M_N']=pd.to_numeric(Exported_File['DIP_pore_M_N'])
# Exported_File['Q_N2S']=pd.to_numeric(Exported_File['Q_N2S'])
# Exported_File['Lake_O_A_N']=pd.to_numeric(Exported_File['Lake_O_A_N'])
# Exported_File['Lake_O_Storage_N']=pd.to_numeric(Exported_File['Lake_O_Storage_N'])
# Exported_File['Sed_Resusp_M_N']=pd.to_numeric(Exported_File['Sed_Resusp_M_N'])
Exported_File['P_Load_Cal']=pd.to_numeric(Exported_File['P_Load_Cal'])
Exported_File['P_Load_StL']=pd.to_numeric(Exported_File['P_Load_StL'])
Exported_File['P_Load_South']=pd.to_numeric(Exported_File['P_Load_South'])
Exported_File = Exported_File.set_index('Date')
Exported_File.index = pd.to_datetime(Exported_File.index, unit = 'ns')
Exported_File_Mean = Exported_File.resample('M').mean()
Exported_File_Sum = Exported_File.resample('M').sum()
# Exported_File.to_csv('./Outputs/Daily.csv')
Exported_File_Mean.to_csv('./Outputs/Exported_File_Opt_0809_Mean_%s.csv'%Pre_defined_Variables.Schedule)
Exported_File_Sum.to_csv('./Outputs/Exported_File_Opt_0809_Sum_%s.csv'%Pre_defined_Variables.Schedule)