diff --git a/optuna_integration/pytorch_lightning/pytorch_lightning.py b/optuna_integration/pytorch_lightning/pytorch_lightning.py
index b2cf3a92..c2b68772 100644
--- a/optuna_integration/pytorch_lightning/pytorch_lightning.py
+++ b/optuna_integration/pytorch_lightning/pytorch_lightning.py
@@ -52,7 +52,7 @@ class PyTorchLightningPruningCallback(Callback):
.. note::
If you would like to use PyTorchLightningPruningCallback in a distributed training
- environment, you need to evoke `PyTorchLightningPruningCallback.check_pruned()`
+ environment, you need to evoke ``PyTorchLightningPruningCallback.check_pruned()``
manually so that :class:`~optuna.exceptions.TrialPruned` is properly handled.
"""
@@ -148,7 +148,7 @@ def check_pruned(self) -> None:
"""Raise :class:`optuna.TrialPruned` manually if pruned.
Currently, ``intermediate_values`` are not properly propagated between processes due to
- storage cache. Therefore, necessary information is kept in trial_system_attrs when the
+ storage cache. Therefore, necessary information is kept in ``trial.system_attrs`` when the
trial runs in a distributed situation. Please call this method right after calling
``lightning.pytorch.Trainer.fit()``.
If a callback doesn't have any backend storage for DDP, this method does nothing.
diff --git a/optuna_integration/shap/shap.py b/optuna_integration/shap/shap.py
index d20d5d13..cccbdb2c 100644
--- a/optuna_integration/shap/shap.py
+++ b/optuna_integration/shap/shap.py
@@ -34,8 +34,7 @@ class ShapleyImportanceEvaluator(BaseImportanceEvaluator):
This evaluator requires the `sklearn `_ Python package
and `SHAP `_.
- The model for the SHAP calculation is based on `sklearn.ensemble.RandomForestClassifier
- `_.
+ The model for the SHAP calculation is based on :class:`sklearn.ensemble.RandomForestClassifier`.
Args:
n_trees:
diff --git a/optuna_integration/sklearn/sklearn.py b/optuna_integration/sklearn/sklearn.py
index dab346ef..6818ba07 100644
--- a/optuna_integration/sklearn/sklearn.py
+++ b/optuna_integration/sklearn/sklearn.py
@@ -153,7 +153,7 @@ class _Objective:
error_score:
Value to assign to the score if an error occurs in fitting. If
- 'raise', the error is raised. If numeric,
+ ``"raise"``, the error is raised. If numeric,
:class:`sklearn.exceptions.FitFailedWarning` is raised. This does not
affect the refit step, which will always raise the error.
@@ -429,7 +429,7 @@ class OptunaSearchCV(BaseEstimator):
error_score:
Value to assign to the score if an error occurs in fitting. If
- 'raise', the error is raised. If numeric,
+ ``"raise"``, the error is raised. If numeric,
:class:`sklearn.exceptions.FitFailedWarning` is raised. This does not
affect the refit step, which will always raise the error.