-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy pathcfg_denoised_callback-ea9bd9fc.patch
83 lines (73 loc) · 3.28 KB
/
cfg_denoised_callback-ea9bd9fc.patch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
index 4bb45ec7..edd0e2a7 100644
--- a/modules/script_callbacks.py
+++ b/modules/script_callbacks.py
@@ -46,6 +46,18 @@ class CFGDenoiserParams:
"""Total number of sampling steps planned"""
+class CFGDenoisedParams:
+ def __init__(self, x, sampling_step, total_sampling_steps):
+ self.x = x
+ """Latent image representation in the process of being denoised"""
+
+ self.sampling_step = sampling_step
+ """Current Sampling step number"""
+
+ self.total_sampling_steps = total_sampling_steps
+ """Total number of sampling steps planned"""
+
+
class UiTrainTabParams:
def __init__(self, txt2img_preview_params):
self.txt2img_preview_params = txt2img_preview_params
@@ -68,6 +80,7 @@ callback_map = dict(
callbacks_before_image_saved=[],
callbacks_image_saved=[],
callbacks_cfg_denoiser=[],
+ callbacks_cfg_denoised=[],
callbacks_before_component=[],
callbacks_after_component=[],
callbacks_image_grid=[],
@@ -150,6 +163,14 @@ def cfg_denoiser_callback(params: CFGDenoiserParams):
report_exception(c, 'cfg_denoiser_callback')
+def cfg_denoised_callback(params: CFGDenoisedParams):
+ for c in callback_map['callbacks_cfg_denoised']:
+ try:
+ c.callback(params)
+ except Exception:
+ report_exception(c, 'cfg_denoised_callback')
+
+
def before_component_callback(component, **kwargs):
for c in callback_map['callbacks_before_component']:
try:
@@ -283,6 +304,14 @@ def on_cfg_denoiser(callback):
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
+def on_cfg_denoised(callback):
+ """register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
+ The callback is called with one argument:
+ - params: CFGDenoisedParams - parameters to be passed to the inner model and sampling state details.
+ """
+ add_callback(callback_map['callbacks_cfg_denoised'], callback)
+
+
def on_before_component(callback):
"""register a function to be called before a component is created.
The callback is called with arguments:
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py
index f076fc55..28847397 100644
--- a/modules/sd_samplers_kdiffusion.py
+++ b/modules/sd_samplers_kdiffusion.py
@@ -8,6 +8,7 @@ from modules import prompt_parser, devices, sd_samplers_common
from modules.shared import opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
+from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
samplers_k_diffusion = [
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
@@ -136,6 +137,9 @@ class CFGDenoiser(torch.nn.Module):
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
+ denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
+ cfg_denoised_callback(denoised_params)
+
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":