diff --git a/src/helpers/utils.R b/src/helpers/utils.R index 0d87248..b8685ca 100644 --- a/src/helpers/utils.R +++ b/src/helpers/utils.R @@ -18,6 +18,7 @@ generate_moransI <- function(adata) { return(res) } + generate_cosine <- function(real, sim) { requireNamespace("lsa", quietly = TRUE) @@ -71,10 +72,9 @@ calculate_recall <- function(real_svg, sim_svg) { return(recall) } + # cell type deconvolution CARD_processing <- function(sp_adata, sc_adata){ - # sp_adata <- input_real_sp - # sc_adata <- input_sc requireNamespace("MuSiC", quietly = TRUE) requireNamespace("CARD", quietly = TRUE) spatial_count <- Matrix::t(sp_adata$layers[["counts"]]) @@ -110,6 +110,7 @@ CARD_processing <- function(sp_adata, sc_adata){ } + generate_jds <- function(real, sim) { common_row_names <- intersect(rownames(real), rownames(sim)) real_common <- real[common_row_names, , drop = FALSE] @@ -122,6 +123,7 @@ generate_jds <- function(real, sim) { return(average_jsd) } + generate_rmse <- function(real, sim) { common_row_names <- intersect(rownames(real), rownames(sim)) real_common <- real[common_row_names, , drop = FALSE] @@ -172,6 +174,7 @@ reclassify_simsce <- function(location, real_cluster, sim_cluster){ } + # generate sparial clustering in simulated data generate_sim_spatialCluster <- function(real_adata, sim_adata){ colnames(sim_adata$obs)[colnames(sim_adata$obs) == "col"] <- "array_col" @@ -195,6 +198,3 @@ generate_sim_spatialCluster <- function(real_adata, sim_adata){ sim_cluster <- sim_sce$spatial.cluster return(sim_cluster) } - - - diff --git a/src/methods/scdesign2/script.R b/src/methods/scdesign2/script.R index ae03fe3..59d103f 100644 --- a/src/methods/scdesign2/script.R +++ b/src/methods/scdesign2/script.R @@ -1,5 +1,3 @@ -# requireNamespace("scDesign2", quietly = TRUE) - ## VIASH START par <- list( input = "resources_test/spatialsimbench_mobnew/dataset_sp.h5ad", @@ -20,7 +18,7 @@ if (par$base != "domain") { } cat("scDesign2 simulation start\n") -counts <- as.matrix(Matrix::t(input$layers[["counts"]])) +counts <- Matrix::t(input$layers[["counts"]]) colnames(counts) <- as.character(input$obs$spatial_cluster) spatial_cluster_prop <- table(input$obs$spatial_cluster) @@ -38,9 +36,6 @@ sim_out <- scDesign2::simulate_count_scDesign2( cell_type_prop = prop.table(spatial_cluster_prop) ) -# colnames(sim_out) <- colnames(t(as.matrix(input$layers[["counts"]]))) -#rownames(sim_out) <- rownames(t(as.matrix(input$layers[["counts"]]))) - rownames(sim_out) <- input$var_names colnames(sim_out) <- input$obs_names diff --git a/src/methods/sparsim/script.R b/src/methods/sparsim/script.R index 1edc62b..4ca76a4 100644 --- a/src/methods/sparsim/script.R +++ b/src/methods/sparsim/script.R @@ -14,67 +14,64 @@ meta <- list( find_cluster_indices <- function(cluster_column) { unique_clusters <- sort(unique(cluster_column)) - conditions <- list() - - for (i in seq_along(unique_clusters)) { - cluster <- unique_clusters[i] + conditions <- lapply(unique_clusters, function(cluster) { indices <- which(cluster_column == cluster) - range_name <- sprintf("cluster_%s_column_index", LETTERS[i]) - assign(range_name, c(min(indices):max(indices)), envir = .GlobalEnv) - conditions[[range_name]] <- get(range_name) - } - + seq(min(indices), max(indices)) + }) + names(conditions) <- sprintf("cluster_%s_column_index", LETTERS[seq_along(unique_clusters)]) return(conditions) } cat("Reading input files\n") input <- anndata::read_h5ad(par$input) -sce <- SingleCellExperiment::SingleCellExperiment( - list(counts = Matrix::t(input$layers[["counts"]])), - colData = input$obs -) - -cat("SPARsim simulation start\n") - -ordered_indices <- order(SingleCellExperiment::colData(sce)$spatial_cluster) -sce_ordered <- sce[, ordered_indices] +cat("SPARSim simulation start\n") if (par$base != "domain") { - stop("ONLY domain base") + stop("Error: Only 'domain' base is supported.") } -count_matrix <- data.frame(as.matrix(SummarizedExperiment::assay(sce_ordered))) -sce_scran <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = as.matrix(count_matrix))) +# Order by spatial cluster +ordered_indices <- order(input$obs$spatial_cluster) +input_ordered <- input[ordered_indices] + +count_matrix <- as.matrix(Matrix::t(input_ordered$layers[["counts"]])) +sce_scran <- SingleCellExperiment::SingleCellExperiment( + assays = list(counts = count_matrix), + colData = input_ordered$obs +) sce_scran <- scran::computeSumFactors(sce_scran, sizes = seq(20, 100, 5), positive = F) -if (any(sce_scran$sizeFactor <= 0)) { - threshold <- 1e-10 - sce_scran$sizeFactor[sce_scran$sizeFactor <= 0] <- threshold -} +# Replace zero or negative size factors with threshold 1e-10 +sce_scran$sizeFactor[sce_scran$sizeFactor <= 0] <- 1e-10 + +# Perform normalization count_matrix_norm <- scater::normalizeCounts(sce_scran, log = FALSE) -count_matrix_conditions <- find_cluster_indices(sce_ordered@colData$spatial_cluster) + +# Find cluster indices for conditions +count_matrix_conditions <- find_cluster_indices(input_ordered$obs[["spatial_cluster"]]) + +# Estimate SPARSim parameters SPARSim_sim_param <- SPARSim::SPARSim_estimate_parameter_from_data( raw_data = count_matrix, norm_data = count_matrix_norm, conditions = count_matrix_conditions ) +# Simulate new dataset sim_result <- SPARSim::SPARSim_simulation(dataset_parameter = SPARSim_sim_param) -colnames(sim_result$count_matrix) <- gsub("\\.", "-", colnames(sim_result$count_matrix)) -simulated_result_order <- sce_ordered -SummarizedExperiment::assays(simulated_result_order, withDimnames = FALSE) <- list(counts = sim_result$count_matrix) -simulated_result_order <- simulated_result_order[,match(colnames(sce), colnames(simulated_result_order))] -simulated_result_order <- simulated_result_order[match(rownames(sce), rownames(simulated_result_order)),] -new_obs <- as.data.frame(simulated_result_order@colData[c("row", "col")]) + +# Reorder simulated results +simulated_result_ordered <- sim_result$count_matrix[ + match(rownames(sim_result$count_matrix), rownames(input_ordered$var)), + match(colnames(sim_result$count_matrix), rownames(input_ordered$obs)) +] cat("Generating output\n") output <- anndata::AnnData( - layers = list( - counts = Matrix::t(SingleCellExperiment::counts(simulated_result_order)) - ), - obs = new_obs, - var = input$var, + layers = list(counts = t(simulated_result_ordered)), + obs = input_ordered$obs[c("row", "col")], + var = input_ordered$var, uns = c( input$uns, list( @@ -83,6 +80,5 @@ output <- anndata::AnnData( ) ) -cat("Write output files\n") -output$write_h5ad(par$output, compression = "gzip") - +cat("Writing output files\n") +output$write_h5ad(par$output, compression = "gzip") \ No newline at end of file diff --git a/src/methods/splatter/script.R b/src/methods/splatter/script.R index 6f7f67a..001492f 100644 --- a/src/methods/splatter/script.R +++ b/src/methods/splatter/script.R @@ -3,7 +3,7 @@ suppressMessages(library(splatter, quietly = TRUE)) ## VIASH START par <- list( - input = "resources_test/spatialsimbench_mobnew/MOBNEW.rds", + input = "resources_test/spatialsimbench_mobnew/dataset_sp.h5ad", base = "domain" ) meta <- list( @@ -14,26 +14,20 @@ meta <- list( cat("Reading input files\n") input <- anndata::read_h5ad(par$input) -sce <- SingleCellExperiment( - list(counts = Matrix::t(input$layers[["counts"]])), - colData = input$obs -) - cat("Splatter simulation start\n") if (par$base != "domain") { stop("ONLY domain base") } -ordered_indices <- order(colData(sce)$spatial_cluster) -sce_ordered <- sce[, ordered_indices] +ordered_indices <- order(input$obs$spatial_cluster) +input_ordered <- input[ordered_indices] simulated_result <- NULL -for (spatial_cluster in (unique(sce_ordered$spatial_cluster))) { - print(spatial_cluster) +for (spatial_cluster in unique(input_ordered$obs[["spatial_cluster"]])) { res <- try({ - sce_spatial_cluster <- sce_ordered[, sce_ordered$spatial_cluster == spatial_cluster] - params <- splatter::splatEstimate(as.matrix(counts(sce_spatial_cluster))) + input_spatial_cluster <- input_ordered[input_ordered$obs[["spatial_cluster"]] == spatial_cluster] + params <- splatter::splatEstimate(as.matrix(t(input_spatial_cluster$layers[["counts"]]))) sim_spatial_cluster <- splatter::splatSimulate(params) sim_spatial_cluster$spatial_cluster <- spatial_cluster colnames(sim_spatial_cluster) <- paste0(spatial_cluster, colnames(sim_spatial_cluster)) @@ -48,24 +42,19 @@ for (spatial_cluster in (unique(sce_ordered$spatial_cluster))) { }) } -colnames(simulated_result) <- colnames(sce_ordered) -rownames(simulated_result) <- rownames(sce_ordered) - -cat("Generating output\n") - -simulated_result_order <- sce_ordered -counts(simulated_result_order) <- counts(simulated_result) +colnames(simulated_result) <- rownames(input_ordered$obs) +rownames(simulated_result) <- rownames(input_ordered$var) -simulated_result_order <- simulated_result_order[, match(colnames(sce), colnames(simulated_result_order))] -simulated_result_order <- simulated_result_order[match(rownames(sce), rownames(simulated_result_order)), ] -new_obs <- as.data.frame(simulated_result_order@colData[c("row", "col")]) +simulated_result_ordered <- counts(simulated_result)[ + match(rownames(counts(simulated_result)), rownames(input_ordered$var)), + match(colnames(counts(simulated_result)), rownames(input_ordered$obs)) +] +cat("Generating output\n") output <- anndata::AnnData( - layers = list( - counts = Matrix::t(counts(simulated_result_order)) - ), - obs = new_obs, - var = input$var, + layers = list(counts = t(simulated_result_ordered)), + obs = input_ordered$obs[c("row", "col")], + var = input_ordered$var, uns = c( input$uns, list( diff --git a/src/methods/symsim/script.R b/src/methods/symsim/script.R index 184f300..793e9be 100644 --- a/src/methods/symsim/script.R +++ b/src/methods/symsim/script.R @@ -3,7 +3,7 @@ suppressMessages(library(SymSim, quietly = TRUE)) ## VIASH START par <- list( - input = "resources_test/spatialsimbench_mobnew/MOBNEW.rds", + input = "resources_test/spatialsimbench_mobnew/dataset_sp.h5ad", base = "domain" ) meta <- list( @@ -14,11 +14,6 @@ meta <- list( cat("Reading input files\n") input <- anndata::read_h5ad(par$input) -sce <- SingleCellExperiment( - list(counts = Matrix::t(input$layers[["counts"]])), - colData = input$obs -) - cat("SymSim simulation start\n") if (par$base != "domain") { @@ -28,28 +23,27 @@ if (par$base != "domain") { simulated_result <- NULL tech <- "UMI" -ordered_indices <- order(colData(sce)$spatial_cluster) -sce_ordered <- sce[, ordered_indices] +ordered_indices <- order(input$obs$spatial_cluster) +input_ordered <- input[ordered_indices] -for (thisSpatialCluster in (unique(sce_ordered$spatial_cluster))) { +for (thisSpatialCluster in unique(input_ordered$obs[["spatial_cluster"]])) { res <- try({ - # subset to one cell type - sce_thiscelltype <- sce_ordered[, sce_ordered$spatial_cluster == thisSpatialCluster] + input_thiscelltype <- input_ordered[input_ordered$obs[["spatial_cluster"]] == thisSpatialCluster] # this is because if some genes are 0 , this will cause error in simulation - keep_feature <- rowSums(counts(sce_thiscelltype) > 0) > 0 - sce_thiscelltype_f <- sce_thiscelltype[keep_feature, ] + keep_feature <- colSums(input_thiscelltype$layers[["counts"]] > 0) > 0 + input_thiscelltype_f <- input_thiscelltype[, keep_feature] best_matches_UMI <- BestMatchParams( tech = "UMI", - counts = as.matrix(counts(sce_thiscelltype_f)), + counts = as.matrix(t(input_thiscelltype_f$layers[["counts"]])), plotfilename = "best_params.umi.qqplot", n_optimal = 1 ) sim_thiscelltype <- SimulateTrueCounts( - ncells_total = dim(sce_thiscelltype)[2], - ngenes = dim(sce_thiscelltype)[1], + ncells_total = dim(input_thiscelltype)[1], + ngenes = dim(input_thiscelltype)[2], evf_type = "one.population", randseed = 1, Sigma = best_matches_UMI$Sigma[1], @@ -60,7 +54,7 @@ for (thisSpatialCluster in (unique(sce_ordered$spatial_cluster))) { mean_hge = best_matches_UMI$mean_hge[1] ) - gene_len <- sample(gene_len_pool, dim(sce_thiscelltype)[1], replace = FALSE) + gene_len <- sample(gene_len_pool, dim(input_thiscelltype)[2], replace = FALSE) sim_thiscelltype <- True2ObservedCounts( true_counts = sim_thiscelltype[[1]], meta_cell = sim_thiscelltype[[3]], @@ -73,7 +67,7 @@ for (thisSpatialCluster in (unique(sce_ordered$spatial_cluster))) { ) # tidy up the names - sim_thiscelltype <- SingleCellExperiment(list(counts = sim_thiscelltype$counts)) + sim_thiscelltype <- SingleCellExperiment(list(counts = as.matrix(sim_thiscelltype$counts))) sim_thiscelltype$spatial_cluster <- thisSpatialCluster # combine the cell types @@ -86,24 +80,21 @@ for (thisSpatialCluster in (unique(sce_ordered$spatial_cluster))) { }) } -colnames(simulated_result) <- colnames(sce_ordered) -rownames(simulated_result) <- rownames(sce_ordered) +colnames(simulated_result) <- rownames(input_ordered$obs) +rownames(simulated_result) <- rownames(input_ordered$var) -simulated_result_order <- sce_ordered -counts(simulated_result_order) <- counts(simulated_result) - -simulated_result_order <- simulated_result_order[, match(colnames(sce), colnames(simulated_result_order))] -simulated_result_order <- simulated_result_order[match(rownames(sce), rownames(simulated_result_order)), ] -new_obs <- as.data.frame(simulated_result_order@colData[c("row", "col")]) +simulated_result_ordered <- counts(simulated_result)[ + match(rownames(counts(simulated_result)), rownames(input_ordered$var)), + match(colnames(counts(simulated_result)), rownames(input_ordered$obs)) +] cat("Generating output\n") - output <- anndata::AnnData( layers = list( - counts = Matrix::t(counts(simulated_result_order)) + counts = Matrix::t(simulated_result_ordered) ), - obs = new_obs, - var = input$var, + obs = input_ordered$obs[c("row", "col")], + var = input_ordered$var, uns = c( input$uns, list( diff --git a/src/methods/zinbwave/script.R b/src/methods/zinbwave/script.R index 2b8e921..dbd439e 100644 --- a/src/methods/zinbwave/script.R +++ b/src/methods/zinbwave/script.R @@ -4,7 +4,7 @@ suppressMessages(library(BiocParallel, quietly = TRUE)) ## VIASH START par <- list( - input = "resources_test/spatialsimbench_mobnew/MOBNEW.rds", + input = "resources_test/spatialsimbench_mobnew/dataset_sp.h5ad", base = "domain" ) meta <- list( @@ -15,13 +15,16 @@ meta <- list( cat("Reading input files\n") input <- anndata::read_h5ad(par$input) -sce <- SingleCellExperiment( - list(counts = Matrix::t(input$layers[["counts"]])), - colData = input$obs -) +# sce <- SingleCellExperiment( +# list(counts = Matrix::t(input$layers[["counts"]])), +# colData = input$obs +# ) + +# ordered_indices <- order(colData(sce)$spatial_cluster) +# sce_ordered <- sce[, ordered_indices] -ordered_indices <- order(colData(sce)$spatial_cluster) -sce_ordered <- sce[, ordered_indices] +ordered_indices <- order(input$obs$spatial_cluster) +input_ordered <- input[ordered_indices] cat("ZINB-WaVE simulation start\n") @@ -33,26 +36,35 @@ cpus <- if (is.null(meta$cpus)) 2L else meta$cpus multicoreParam <- MulticoreParam(workers = cpus) -X <- model.matrix(~spatial_cluster, data=colData(sce_ordered)) -params <- splatter::zinbEstimate(as.matrix(counts(sce_ordered)), design.samples = X, BPPARAM = multicoreParam) +# X <- model.matrix(~spatial_cluster, data=colData(sce_ordered)) +X <- model.matrix(~spatial_cluster, data = input_ordered$obs) + +# params <- splatter::zinbEstimate(as.matrix(counts(sce_ordered)), design.samples = X, BPPARAM = multicoreParam) +params <- splatter::zinbEstimate(as.matrix(t(input_ordered$layers[["counts"]])), design.samples = X, BPPARAM = multicoreParam) simulated_result <- splatter::zinbSimulate(params) -colnames(simulated_result) <- colnames(sce_ordered) -rownames(simulated_result) <- rownames(sce_ordered) +colnames(simulated_result) <- rownames(input_ordered$obs) +rownames(simulated_result) <- rownames(input_ordered$var) -simulated_result_order <- sce_ordered -counts(simulated_result_order) <- counts(simulated_result) +# simulated_result_order <- sce_ordered +# counts(simulated_result_order) <- counts(simulated_result) -simulated_result_order <- simulated_result_order[,match(colnames(sce), colnames(simulated_result_order))] -simulated_result_order <- simulated_result_order[match(rownames(sce), rownames(simulated_result_order)),] -new_obs <- as.data.frame(simulated_result_order@colData[c("row", "col")]) +# simulated_result_order <- simulated_result_order[,match(colnames(sce), colnames(simulated_result_order))] +# simulated_result_order <- simulated_result_order[match(rownames(sce), rownames(simulated_result_order)),] +# new_obs <- as.data.frame(simulated_result_order@colData[c("row", "col")]) + +simulated_result_ordered <- counts(simulated_result)[ + match(rownames(counts(simulated_result)), rownames(input_ordered$var)), + match(colnames(counts(simulated_result)), rownames(input_ordered$obs)) +] +cat("Generating output\n") output <- anndata::AnnData( layers = list( - counts = Matrix::t(counts(simulated_result_order)) + counts = Matrix::t(simulated_result_ordered) ), - obs = new_obs, - var = input$var, + obs = input_ordered$obs[c("row", "col")], + var = input_ordered$var, uns = c( input$uns, list( diff --git a/src/metrics/downstream/script.R b/src/metrics/downstream/script.R index bc9c5a8..6a830cb 100644 --- a/src/metrics/downstream/script.R +++ b/src/metrics/downstream/script.R @@ -1,8 +1,8 @@ ## VIASH START par <- list( - input_spatial_dataset = "resources_test/spatialsimbench_mobnew/MOBNEW.rds", - input_singlecell_dataset = "resources_test/spatialsimbench_mobnew/MOBNEW_sc.rds", - input_simulated_dataset = "resources_test/spatialsimbench_mobnew/simulated_dataset.h5ad", + input_spatial_dataset = "resources_test/spatialsimbench_mobnew/dataset_sp.h5ad", + input_singlecell_dataset = "resources_test/spatialsimbench_mobnew/dataset_sc.h5ad", + input_simulated_dataset = "resources_test/spatialsimbench_mobnew/simulated_dataset_processed.h5ad", plat = "ST", # new here output = "output.h5ad" ) @@ -39,24 +39,11 @@ crosscor_cosine <- generate_cosine(real_moransI, sim_moransI) crosscor_mantel <- generate_mantel(real_moransI, sim_moransI) cat("spatial clustering evaluation\n") -# TODO -sim_sce <- scater::logNormCounts(SingleCellExperiment::SingleCellExperiment( - list(counts = Matrix::t(input_simulated_sp$layers[["counts"]])), - colData = input_simulated_sp$obs, - metadata = input_simulated_sp$obsm -)) - -# generate the simulated clustering result first by BayersSpace -# sim_sce <- BayesSpace::spatialPreprocess(sim_sce, platform=par$plat, -# n.PCs=7, n.HVGs=2000, log.normalize=FALSE) -# sim_sce <- BayesSpace::spatialCluster(sim_sce, q=max(unique(input_real_sp$obs[,c("spatial_cluster")])), platform=par$plat, d=7, -# init.method="mclust", model="t", gamma=2, -# nrep=1000, burn.in=100, -# save.chain=TRUE) # reclassify the clustering result -real_cluster <- input_real_sp$obs[,c("spatial_cluster")] +real_cluster <- input_real_sp$obs[, c("spatial_cluster")] sim_cluster <- generate_sim_spatialCluster(input_real_sp, input_simulated_sp) -location <- colnames(counts(sim_sce)) +location <- rownames(input_simulated_sp) +location sim_new_cluster <- reclassify_simsce(location, real_cluster, sim_cluster) # ART and NMI diff --git a/src/metrics/ks_statistic_spatial/script.py b/src/metrics/ks_statistic_spatial/script.py index d29a9b1..890f470 100644 --- a/src/metrics/ks_statistic_spatial/script.py +++ b/src/metrics/ks_statistic_spatial/script.py @@ -8,7 +8,6 @@ ## VIASH START par = { 'input_spatial_dataset': 'temp_prostate.srtsim.ks_statistic_spatial/_viash_par/input_spatial_dataset_1/output_sp.h5ad', - # 'input_singlecell_dataset': 'resources_test/spatialsimbench_mobnew/MOBNEW_sc.rds', 'input_simulated_dataset': 'temp_prostate.srtsim.ks_statistic_spatial/_viash_par/input_simulated_dataset_1/gastrulation.srtsim.generate_sim_spatialcluster.output_sp.h5ad', 'output': 'output.h5ad' } diff --git a/src/process_datasets/generate_sim_spatialcluster/script.R b/src/process_datasets/generate_sim_spatialcluster/script.R index 8c2b52a..6632ed7 100644 --- a/src/process_datasets/generate_sim_spatialcluster/script.R +++ b/src/process_datasets/generate_sim_spatialcluster/script.R @@ -3,32 +3,28 @@ ## VIASH START par <- list( # inputs - input_sp = "resources_test/spatialsimbench_mobnew/MOBNEW.rds", - input_sp_sim = "resources_test/spatialsimbench_mobnew/simulated_dataset.h5ad", + input_sp = "resources_test/spatialsimbench_mobnew/dataset_sp.h5ad", + input_sp_sim = "resources_test/spatialsimbench_mobnew/simulated_dataset_processed.h5ad", # outputs output_sp = "resources_test/spatialsimbench_mobnew/simulated_dataset.h5ad" ) meta <- list( - resources_dir = "target/executable/process_datasets/generate_sim_sparialCluster" + resources_dir = "target/executable/process_datasets/generate_sim_spatialcluster" ) ## VIASH END + source(file.path(meta$resources_dir, "utils.R")) cat("Read input files\n") input_real_sp <- anndata::read_h5ad(par$input_sp) input_simulated_sp <- anndata::read_h5ad(par$input_sp_sim) -sim_sce <- scater::logNormCounts(SingleCellExperiment::SingleCellExperiment( - list(counts = Matrix::t(input_simulated_sp$layers[["counts"]])), - colData = input_simulated_sp$obs, - metadata = input_simulated_sp$obsm -)) cat("add spatial cluster in simulated dataset:\n") sim_cluster <- generate_sim_spatialCluster(input_real_sp, input_simulated_sp) # need reclassify again real_cluster <- input_real_sp$obs[, c("spatial_cluster")] -location <- colnames(SingleCellExperiment::counts(sim_sce)) +location <- rownames(input_simulated_sp) sim_new_cluster <- reclassify_simsce(location, real_cluster, sim_cluster) input_simulated_sp$obs$spatial_cluster <- sim_new_cluster diff --git a/src/process_datasets/precompute_downstream/script.R b/src/process_datasets/precompute_downstream/script.R index aa28b77..e698be1 100644 --- a/src/process_datasets/precompute_downstream/script.R +++ b/src/process_datasets/precompute_downstream/script.R @@ -8,7 +8,7 @@ par <- list( # inputs input_sp = "resources_test/spatialsimbench_mobnew/temp_dataset_sp_part2.h5ad", # outputs - output_sp = "resources_test/spatialsimbench_mobnew/MOBNEW.rds" + output_sp = "dataset_sp.h5ad" ) meta <- list( resources_dir = "src/helpers"