Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Samples at the very start/end of a CWA file may not receive unique timestamps #2

Open
danielgjackson opened this issue Jun 8, 2022 · 0 comments
Labels
enhancement New feature or request

Comments

@danielgjackson
Copy link
Contributor

Issue:

  • Only one timestamp per sector (40/80/120 samples)
  • The interpolation to generate the other timestamps does not extrapolate beyond the very first/last timestamps
  • The very first/last few samples can receive the same timestamp from the interpolation.

To recreate with the PyPI version of the package:

python -m pip install openmovement
python

Then, in Python:

from openmovement.load import CwaData
end = 10
filename = 'AX6-Sample.cwa'
with CwaData(filename, include_gyro=True, include_temperature=False) as cwa_data:
    # As an ndarray of [time,accel_x,accel_y,accel_z,temperature]
    sample_values = cwa_data.get_sample_values()
    print('\nAs ndarray:')
    print(sample_values[:end])
    
    # As a pandas DataFrame
    df = cwa_data.get_samples()
    print('\nAs a pandas DataFrame')
    print(df[:end])

Output:

As ndarray:
[[ 1.53029520e+09 -2.14843750e-02  1.00317383e+00 -5.17578125e-02
   2.78320312e+01  1.22070312e+01  9.27734375e+00]
 [ 1.53029520e+09 -3.85742188e-02  9.86328125e-01 -7.32421875e-02
   2.00195312e+01  2.25830078e+00  3.05175781e+00]
 [ 1.53029520e+09 -1.66015625e-02  1.01367188e+00 -2.83203125e-02
   1.41601562e+01  7.93457031e-01 -6.71386719e-01]
 [ 1.53029520e+09  4.88281250e-04  1.04956055e+00  3.14941406e-02
   1.24511719e+01 -1.95312500e+00 -2.86865234e+00]
 [ 1.53029520e+09 -3.71093750e-02  1.08081055e+00  9.15527344e-02
   1.31835938e+01 -1.13525391e+01 -6.59179688e+00]
 [ 1.53029520e+09 -5.32226562e-02  1.07006836e+00  1.91406250e-01
   1.33666992e+01 -2.54516602e+01 -7.99560547e+00]
 [ 1.53029520e+09 -1.97753906e-02  1.06103516e+00  2.80517578e-01
   1.07421875e+01 -3.72924805e+01 -5.37109375e+00]
 [ 1.53029520e+09 -1.78222656e-02  1.05419922e+00  2.81250000e-01
   1.07421875e+01 -4.90112305e+01 -5.85937500e+00]
 [ 1.53029520e+09 -9.76562500e-02  1.02343750e+00  2.13623047e-01
   1.42211914e+01 -6.41479492e+01 -1.09252930e+01]
 [ 1.53029520e+09 -1.34033203e-01  9.83154297e-01  1.72363281e-01
   1.39160156e+01 -7.33642578e+01 -1.38549805e+01]]

As a pandas DataFrame
                           time   accel_x   accel_y   accel_z     gyro_x     gyro_y     gyro_z
0 2018-06-29 18:00:00.703765760 -0.021484  1.003174 -0.051758  27.832031  12.207031   9.277344
1 2018-06-29 18:00:00.703765760 -0.038574  0.986328 -0.073242  20.019531   2.258301   3.051758
2 2018-06-29 18:00:00.703765760 -0.016602  1.013672 -0.028320  14.160156   0.793457  -0.671387
3 2018-06-29 18:00:00.703765760  0.000488  1.049561  0.031494  12.451172  -1.953125  -2.868652
4 2018-06-29 18:00:00.703765760 -0.037109  1.080811  0.091553  13.183594 -11.352539  -6.591797
5 2018-06-29 18:00:00.703765760 -0.053223  1.070068  0.191406  13.366699 -25.451660  -7.995605
6 2018-06-29 18:00:00.703765760 -0.019775  1.061035  0.280518  10.742188 -37.292480  -5.371094
7 2018-06-29 18:00:00.709426944 -0.017822  1.054199  0.281250  10.742188 -49.011230  -5.859375
8 2018-06-29 18:00:00.715087872 -0.097656  1.023438  0.213623  14.221191 -64.147949 -10.925293
9 2018-06-29 18:00:00.720748800 -0.134033  0.983154  0.172363  13.916016 -73.364258 -13.854980

Note the first 8 samples are at the same timestamp.

@danielgjackson danielgjackson added the enhancement New feature or request label Jun 8, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

No branches or pull requests

1 participant