-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add single depth to 3d hand keypoints, add nyu hand dataset and awr n…
…etwork
- Loading branch information
Showing
19 changed files
with
2,060 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
dataset_info = dict( | ||
dataset_name='nyu', | ||
paper_info=dict( | ||
author='Jonathan Tompson and Murphy Stein and Yann Lecun and ' | ||
'Ken Perlin', | ||
title='Real-Time Continuous Pose Recovery of Human Hands ' | ||
'Using Convolutional Networks', | ||
container='ACM Transactions on Graphics', | ||
year='2014', | ||
homepage='https://jonathantompson.github.io/NYU_Hand_Pose_Dataset.htm', | ||
), | ||
keypoint_info={ | ||
0: dict(name='F1_KNU3_A', id=0, color=[255, 128, 0], type='', swap=''), | ||
1: dict(name='F1_KNU3_B', id=1, color=[255, 128, 0], type='', swap=''), | ||
2: dict(name='F1_KNU2_A', id=2, color=[255, 128, 0], type='', swap=''), | ||
3: dict(name='F1_KNU2_B', id=3, color=[255, 128, 0], type='', swap=''), | ||
4: | ||
dict(name='F1_KNU1_A', id=4, color=[255, 153, 255], type='', swap=''), | ||
5: | ||
dict(name='F1_KNU1_B', id=5, color=[255, 153, 255], type='', swap=''), | ||
6: | ||
dict(name='F2_KNU3_A', id=6, color=[255, 153, 255], type='', swap=''), | ||
7: | ||
dict(name='F2_KNU3_B', id=7, color=[255, 153, 255], type='', swap=''), | ||
8: | ||
dict(name='F2_KNU2_A', id=8, color=[102, 178, 255], type='', swap=''), | ||
9: | ||
dict(name='F2_KNU2_B', id=9, color=[102, 178, 255], type='', swap=''), | ||
10: | ||
dict(name='F2_KNU1_A', id=10, color=[102, 178, 255], type='', swap=''), | ||
11: | ||
dict(name='F2_KNU1_B', id=11, color=[102, 178, 255], type='', swap=''), | ||
12: | ||
dict(name='F3_KNU3_A', id=12, color=[255, 51, 51], type='', swap=''), | ||
13: | ||
dict(name='F3_KNU3_B', id=13, color=[255, 51, 51], type='', swap=''), | ||
14: | ||
dict(name='F3_KNU2_A', id=14, color=[255, 51, 51], type='', swap=''), | ||
15: | ||
dict(name='F3_KNU2_B', id=15, color=[255, 51, 51], type='', swap=''), | ||
16: dict(name='F3_KNU1_A', id=16, color=[0, 255, 0], type='', swap=''), | ||
17: dict(name='F3_KNU1_B', id=17, color=[0, 255, 0], type='', swap=''), | ||
18: dict(name='F4_KNU3_A', id=18, color=[0, 255, 0], type='', swap=''), | ||
19: dict(name='F4_KNU3_B', id=19, color=[0, 255, 0], type='', swap=''), | ||
20: | ||
dict(name='F4_KNU2_A', id=20, color=[255, 255, 255], type='', swap=''), | ||
21: | ||
dict(name='F4_KNU2_B', id=21, color=[255, 128, 0], type='', swap=''), | ||
22: | ||
dict(name='F4_KNU1_A', id=22, color=[255, 128, 0], type='', swap=''), | ||
23: | ||
dict(name='F4_KNU1_B', id=23, color=[255, 128, 0], type='', swap=''), | ||
24: | ||
dict(name='TH_KNU3_A', id=24, color=[255, 128, 0], type='', swap=''), | ||
25: | ||
dict(name='TH_KNU3_B', id=25, color=[255, 153, 255], type='', swap=''), | ||
26: | ||
dict(name='TH_KNU2_A', id=26, color=[255, 153, 255], type='', swap=''), | ||
27: | ||
dict(name='TH_KNU2_B', id=27, color=[255, 153, 255], type='', swap=''), | ||
28: | ||
dict(name='TH_KNU1_A', id=28, color=[255, 153, 255], type='', swap=''), | ||
29: | ||
dict(name='TH_KNU1_B', id=29, color=[102, 178, 255], type='', swap=''), | ||
30: | ||
dict(name='PALM_1', id=30, color=[102, 178, 255], type='', swap=''), | ||
31: | ||
dict(name='PALM_2', id=31, color=[102, 178, 255], type='', swap=''), | ||
32: | ||
dict(name='PALM_3', id=32, color=[102, 178, 255], type='', swap=''), | ||
33: dict(name='PALM_4', id=33, color=[255, 51, 51], type='', swap=''), | ||
34: dict(name='PALM_5', id=34, color=[255, 51, 51], type='', swap=''), | ||
35: dict(name='PALM_6', id=35, color=[255, 51, 51], type='', swap=''), | ||
}, | ||
skeleton_info={ | ||
0: dict(link=('PALM_3', 'F1_KNU2_B'), id=0, color=[255, 128, 0]), | ||
1: dict(link=('F1_KNU2_B', 'F1_KNU3_A'), id=1, color=[255, 128, 0]), | ||
2: dict(link=('PALM_3', 'F2_KNU2_B'), id=2, color=[255, 128, 0]), | ||
3: dict(link=('F2_KNU2_B', 'F2_KNU3_A'), id=3, color=[255, 128, 0]), | ||
4: dict(link=('PALM_3', 'F3_KNU2_B'), id=4, color=[255, 153, 255]), | ||
5: dict(link=('F3_KNU2_B', 'F3_KNU3_A'), id=5, color=[255, 153, 255]), | ||
6: dict(link=('PALM_3', 'F4_KNU2_B'), id=6, color=[255, 153, 255]), | ||
7: dict(link=('F4_KNU2_B', 'F4_KNU3_A'), id=7, color=[255, 153, 255]), | ||
8: dict(link=('PALM_3', 'TH_KNU2_B'), id=8, color=[102, 178, 255]), | ||
9: dict(link=('TH_KNU2_B', 'TH_KNU3_B'), id=9, color=[102, 178, 255]), | ||
10: | ||
dict(link=('TH_KNU3_B', 'TH_KNU3_A'), id=10, color=[102, 178, 255]), | ||
11: dict(link=('PALM_3', 'PALM_1'), id=11, color=[102, 178, 255]), | ||
12: dict(link=('PALM_3', 'PALM_2'), id=12, color=[255, 51, 51]), | ||
}, | ||
joint_weights=[1.] * 36, | ||
sigmas=[]) |
177 changes: 177 additions & 0 deletions
177
configs/hand/3d_kpt_sview_depth_img/awr/nyu/res50_nyu_all_128x128.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
_base_ = [ | ||
'../../../../_base_/default_runtime.py', | ||
'../../../../_base_/datasets/nyu.py' | ||
] | ||
checkpoint_config = dict(interval=1) | ||
# TODO: metric | ||
evaluation = dict( | ||
interval=1, | ||
metric=['MRRPE', 'MPJPE', 'Handedness_acc'], | ||
save_best='MPJPE_all') | ||
|
||
optimizer = dict( | ||
type='Adam', | ||
lr=2e-4, | ||
) | ||
optimizer_config = dict(grad_clip=None) | ||
# learning policy | ||
lr_config = dict(policy='step', step=[15, 17]) | ||
total_epochs = 20 | ||
log_config = dict( | ||
interval=20, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
load_from = '/root/mmpose/data/ckpt/new_res50.pth' | ||
used_keypoints_index = [0, 3, 6, 9, 12, 15, 18, 21, 24, 25, 27, 30, 31, 32] | ||
|
||
channel_cfg = dict( | ||
num_output_channels=14, | ||
dataset_joints=36, | ||
dataset_channel=used_keypoints_index, | ||
inference_channel=used_keypoints_index) | ||
|
||
# model settings | ||
model = dict( | ||
type='Depthhand3D', # pretrained=None | ||
backbone=dict( | ||
type='AWRResNet', | ||
depth=50, | ||
frozen_stages=-1, | ||
zero_init_residual=False, | ||
in_channels=1), | ||
keypoint_head=dict( | ||
type='AdaptiveWeightingRegression3DHead', | ||
offset_head_cfg=dict( | ||
in_channels=256, | ||
out_channels_vector=42, | ||
out_channels_scalar=14, | ||
heatmap_kernel_size=1.0, | ||
), | ||
deconv_head_cfg=dict( | ||
in_channels=2048, | ||
out_channels=256, | ||
depth_size=64, | ||
num_deconv_layers=3, | ||
num_deconv_filters=(256, 256, 256), | ||
num_deconv_kernels=(4, 4, 4), | ||
extra=dict(final_conv_kernel=0, )), | ||
loss_offset=dict(type='AWRSmoothL1Loss', use_target_weight=False), | ||
loss_keypoint=dict(type='AWRSmoothL1Loss', use_target_weight=True), | ||
), | ||
train_cfg=dict(use_img_for_head=True), | ||
test_cfg=dict(use_img_for_head=True, flip_test=False)) | ||
|
||
data_cfg = dict( | ||
image_size=[128, 128], | ||
heatmap_size=[64, 64, 56], | ||
cube_size=[300, 300, 300], | ||
heatmap_size_root=64, | ||
num_output_channels=channel_cfg['num_output_channels'], | ||
num_joints=channel_cfg['dataset_joints'], | ||
dataset_channel=channel_cfg['dataset_channel'], | ||
inference_channel=channel_cfg['inference_channel']) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile', color_type='unchanged'), | ||
dict(type='TopDownGetBboxCenterScale', padding=1.0), | ||
dict(type='TopDownAffine'), | ||
dict(type='DepthToTensor'), | ||
dict( | ||
type='MultitaskGatherTarget', | ||
pipeline_list=[ | ||
[ | ||
dict( | ||
type='TopDownGenerateTargetRegression', | ||
use_zero_mean=True, | ||
joint_indices=used_keypoints_index, | ||
is_3d=True, | ||
normalize_depth=True, | ||
), | ||
dict( | ||
type='HandGenerateJointToOffset', | ||
heatmap_kernel_size=1.0, | ||
) | ||
], | ||
[ | ||
dict( | ||
type='TopDownGenerateTargetRegression', | ||
use_zero_mean=True, | ||
joint_indices=used_keypoints_index, | ||
is_3d=True, | ||
normalize_depth=True, | ||
) | ||
], | ||
], | ||
pipeline_indices=[0, 1], | ||
), | ||
dict( | ||
type='Collect', | ||
keys=['img', 'target', 'target_weight'], | ||
meta_keys=[ | ||
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', | ||
'rotation', 'flip_pairs', 'cube_size', 'center_depth', 'focal', | ||
'princpt', 'image_size', 'joints_cam', 'dataset_channel', | ||
'joints_uvd' | ||
]), | ||
] | ||
|
||
val_pipeline = [ | ||
dict(type='LoadImageFromFile', color_type='unchanged'), | ||
dict(type='TopDownGetBboxCenterScale', padding=1.0), | ||
dict(type='TopDownAffine'), | ||
dict(type='DepthToTensor'), | ||
dict( | ||
type='Collect', | ||
keys=['img'], | ||
meta_keys=[ | ||
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', | ||
'rotation', 'flip_pairs', 'cube_size', 'center_depth', 'focal', | ||
'princpt', 'image_size', 'joints_cam', 'dataset_channel', | ||
'joints_uvd' | ||
]) | ||
] | ||
|
||
test_pipeline = val_pipeline | ||
|
||
data_root = 'data/nyu' | ||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=0, | ||
shuffle=False, | ||
train=dict( | ||
type='NYUHandDataset', | ||
ann_file=f'{data_root}/annotations/nyu_test_data.json', | ||
camera_file=f'{data_root}/annotations/nyu_test_camera.json', | ||
joint_file=f'{data_root}/annotations/nyu_test_joint_3d.json', | ||
img_prefix=f'{data_root}/images/test/', | ||
data_cfg=data_cfg, | ||
use_refined_center=False, | ||
align_uvd_xyz_direction=True, | ||
pipeline=train_pipeline, | ||
dataset_info={{_base_.dataset_info}}), | ||
val=dict( | ||
type='NYUHandDataset', | ||
ann_file=f'{data_root}/annotations/nyu_test_data.json', | ||
camera_file=f'{data_root}/annotations/nyu_test_camera.json', | ||
joint_file=f'{data_root}/annotations/nyu_test_joint_3d.json', | ||
img_prefix=f'{data_root}/images/test/', | ||
data_cfg=data_cfg, | ||
use_refined_center=False, | ||
align_uvd_xyz_direction=True, | ||
pipeline=val_pipeline, | ||
dataset_info={{_base_.dataset_info}}), | ||
test=dict( | ||
type='NYUHandDataset', | ||
ann_file=f'{data_root}/annotations/nyu_test_data.json', | ||
camera_file=f'{data_root}/annotations/nyu_test_camera.json', | ||
joint_file=f'{data_root}/annotations/nyu_test_joint_3d.json', | ||
img_prefix=f'{data_root}/images/test/', | ||
data_cfg=data_cfg, | ||
use_refined_center=False, | ||
align_uvd_xyz_direction=True, | ||
pipeline=test_pipeline, | ||
dataset_info={{_base_.dataset_info}}), | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.