You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Formating bboxes of pred_instances_3d
Start to convert detection format...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 13.4 task/s, elapsed: 6s, ETA: 0s
Results writes to /tmp/tmpzqmyl7iy/results/pred_instances_3d/results_nusc.json
Evaluating bboxes of pred_instances_3d
Traceback (most recent call last):
File "tools/train.py", line 135, in
main()
File "tools/train.py", line 131, in main
runner.train()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1777, in train
model = self.train_loop.run() # type: ignore
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 103, in run
self.runner.val_loop.run()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 376, in run
metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/evaluator.py", line 79, in evaluate
_results = metric.evaluate(size)
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/metric.py", line 133, in evaluate
_metrics = self.compute_metrics(results) # type: ignore
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 177, in compute_metrics
ap_dict = self.nus_evaluate(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 207, in nus_evaluate
ret_dict = self._evaluate_single(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 233, in _evaluate_single
nusc = NuScenes(
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/nuscenes/nuscenes.py", line 62, in init
assert osp.exists(self.table_root), 'Database version not found: {}'.format(self.table_root)
AssertionError: Database version not found: data/nuscenes/v1.0-trainval
Additional information
I use bevfusion to train nuscenes-mini ,when finish training,it failed to evaluate.
The text was updated successfully, but these errors were encountered:
Prerequisite
Task
I'm using the official example scripts/configs for the officially supported tasks/models/datasets.
Branch
main branch https://github.com/open-mmlab/mmdetection3d
Environment
System environment:
sys.platform: linux
Python: 3.8.19 (default, Mar 20 2024, 19:58:24) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 1514969306
GPU 0,1: NVIDIA A30
CUDA_HOME: /home/shiying/luofan/CUDA/cuda11.8
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.0.0+cu118
PyTorch compiling details: PyTorch built with:
GCC 9.3
C++ Version: 201703
Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
OpenMP 201511 (a.k.a. OpenMP 4.5)
LAPACK is enabled (usually provided by MKL)
NNPACK is enabled
CPU capability usage: NO AVX
CUDA Runtime 11.8
NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
CuDNN 8.7
Magma 2.6.1
Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.15.1+cu118
OpenCV: 4.10.0
MMEngine: 0.10.4
Runtime environment:
cudnn_benchmark: False
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
dist_cfg: {'backend': 'nccl'}
seed: 1514969306
Distributed launcher: pytorch
Distributed training: True
GPU number: 1
Reproduces the problem - code sample
1
Reproduces the problem - command or script
bash tools/dist_train.sh projects/BEVFusion/configs/only_lidar.py 1
Reproduces the problem - error message
Formating bboxes of pred_instances_3d
Start to convert detection format...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 13.4 task/s, elapsed: 6s, ETA: 0s
Results writes to /tmp/tmpzqmyl7iy/results/pred_instances_3d/results_nusc.json
Evaluating bboxes of pred_instances_3d
Traceback (most recent call last):
File "tools/train.py", line 135, in
main()
File "tools/train.py", line 131, in main
runner.train()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1777, in train
model = self.train_loop.run() # type: ignore
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 103, in run
self.runner.val_loop.run()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 376, in run
metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/evaluator.py", line 79, in evaluate
_results = metric.evaluate(size)
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/metric.py", line 133, in evaluate
_metrics = self.compute_metrics(results) # type: ignore
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 177, in compute_metrics
ap_dict = self.nus_evaluate(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 207, in nus_evaluate
ret_dict = self._evaluate_single(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 233, in _evaluate_single
nusc = NuScenes(
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/nuscenes/nuscenes.py", line 62, in init
assert osp.exists(self.table_root), 'Database version not found: {}'.format(self.table_root)
AssertionError: Database version not found: data/nuscenes/v1.0-trainval
Additional information
I use bevfusion to train nuscenes-mini ,when finish training,it failed to evaluate.
The text was updated successfully, but these errors were encountered: