Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug] nuscenes评估报错 #3037

Open
3 tasks done
2000lf opened this issue Sep 12, 2024 · 2 comments
Open
3 tasks done

[Bug] nuscenes评估报错 #3037

2000lf opened this issue Sep 12, 2024 · 2 comments

Comments

@2000lf
Copy link

2000lf commented Sep 12, 2024

Prerequisite

Task

I'm using the official example scripts/configs for the officially supported tasks/models/datasets.

Branch

main branch https://github.com/open-mmlab/mmdetection3d

Environment

System environment:
sys.platform: linux
Python: 3.8.19 (default, Mar 20 2024, 19:58:24) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 1514969306
GPU 0,1: NVIDIA A30
CUDA_HOME: /home/shiying/luofan/CUDA/cuda11.8
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.0.0+cu118
PyTorch compiling details: PyTorch built with:

  • GCC 9.3

  • C++ Version: 201703

  • Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications

  • Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)

  • OpenMP 201511 (a.k.a. OpenMP 4.5)

  • LAPACK is enabled (usually provided by MKL)

  • NNPACK is enabled

  • CPU capability usage: NO AVX

  • CUDA Runtime 11.8

  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90

  • CuDNN 8.7

  • Magma 2.6.1

  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,

    TorchVision: 0.15.1+cu118
    OpenCV: 4.10.0
    MMEngine: 0.10.4

Runtime environment:
cudnn_benchmark: False
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
dist_cfg: {'backend': 'nccl'}
seed: 1514969306
Distributed launcher: pytorch
Distributed training: True
GPU number: 1

Reproduces the problem - code sample

1

Reproduces the problem - command or script

bash tools/dist_train.sh projects/BEVFusion/configs/only_lidar.py 1

Reproduces the problem - error message

Formating bboxes of pred_instances_3d
Start to convert detection format...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 13.4 task/s, elapsed: 6s, ETA: 0s
Results writes to /tmp/tmpzqmyl7iy/results/pred_instances_3d/results_nusc.json
Evaluating bboxes of pred_instances_3d
Traceback (most recent call last):
File "tools/train.py", line 135, in
main()
File "tools/train.py", line 131, in main
runner.train()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1777, in train
model = self.train_loop.run() # type: ignore
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 103, in run
self.runner.val_loop.run()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 376, in run
metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/evaluator.py", line 79, in evaluate
_results = metric.evaluate(size)
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/metric.py", line 133, in evaluate
_metrics = self.compute_metrics(results) # type: ignore
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 177, in compute_metrics
ap_dict = self.nus_evaluate(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 207, in nus_evaluate
ret_dict = self._evaluate_single(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 233, in _evaluate_single
nusc = NuScenes(
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/nuscenes/nuscenes.py", line 62, in init
assert osp.exists(self.table_root), 'Database version not found: {}'.format(self.table_root)
AssertionError: Database version not found: data/nuscenes/v1.0-trainval

Additional information

I use bevfusion to train nuscenes-mini ,when finish training,it failed to evaluate.

@ljcpp
Copy link

ljcpp commented Nov 22, 2024

what wrong

@2000lf
Copy link
Author

2000lf commented Nov 29, 2024

what wrong

Error happend when val after train v1.0-mini dataset

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants