Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

export get_simcc_maximum for simcc #2449

Merged
merged 4 commits into from
Sep 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/docker.yml
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ jobs:
export TAG=$TAG_PREFIX
echo "TAG=${TAG}" >> $GITHUB_ENV
echo $TAG
docker ./docker/Release/ -t ${TAG} --no-cache
docker build ./docker/Release/ -t ${TAG} --no-cache
docker push $TAG
- name: Push docker image with released tag
if: startsWith(github.ref, 'refs/tags/') == true
Expand Down
6 changes: 3 additions & 3 deletions .github/workflows/publish.yml
Original file line number Diff line number Diff line change
Expand Up @@ -29,19 +29,19 @@ jobs:
echo $MMDEPLOY_VERSION
echo "MMDEPLOY_VERSION=$MMDEPLOY_VERSION" >> $GITHUB_ENV
echo "OUTPUT_DIR=$PREBUILD_DIR/$MMDEPLOY_VERSION" >> $GITHUB_ENV
pip install twine
python3 -m pip install twine --user
- name: Upload mmdeploy
continue-on-error: true
run: |
cd $OUTPUT_DIR/mmdeploy
ls -sha *.whl
twine upload *.whl -u __token__ -p ${{ secrets.pypi_password }}
python3 -m twine upload *.whl -u __token__ -p ${{ secrets.pypi_password }}
- name: Upload mmdeploy_runtime
continue-on-error: true
run: |
cd $OUTPUT_DIR/mmdeploy_runtime
ls -sha *.whl
twine upload *.whl -u __token__ -p ${{ secrets.pypi_password }}
python3 -m twine upload *.whl -u __token__ -p ${{ secrets.pypi_password }}
- name: Check assets
run: |
ls -sha $OUTPUT_DIR/sdk
Expand Down
4 changes: 4 additions & 0 deletions configs/mmpose/pose-detection_simcc_onnxruntime_dynamic.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,7 @@
0: 'batch'
}
})

codebase_config = dict(
export_postprocess=False # do not export get_simcc_maximum
)
26 changes: 18 additions & 8 deletions csrc/mmdeploy/codebase/mmpose/simcc_label.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,10 @@ class SimCCLabelDecode : public MMPose {
auto& params = config["params"];
flip_test_ = params.value("flip_test", flip_test_);
simcc_split_ratio_ = params.value("simcc_split_ratio", simcc_split_ratio_);
export_postprocess_ = params.value("export_postprocess", export_postprocess_);
if (export_postprocess_) {
simcc_split_ratio_ = 1.0;
}
if (params.contains("input_size")) {
from_value(params["input_size"], input_size_);
}
Expand All @@ -52,26 +56,31 @@ class SimCCLabelDecode : public MMPose {

Tensor keypoints({Device{"cpu"}, DataType::kFLOAT, {simcc_x.shape(0), simcc_x.shape(1), 2}});
Tensor scores({Device{"cpu"}, DataType::kFLOAT, {simcc_x.shape(0), simcc_x.shape(1), 1}});
get_simcc_maximum(simcc_x, simcc_y, keypoints, scores);
float *keypoints_data = nullptr, *scores_data = nullptr;
if (!export_postprocess_) {
get_simcc_maximum(simcc_x, simcc_y, keypoints, scores);
keypoints_data = keypoints.data<float>();
scores_data = scores.data<float>();
} else {
keypoints_data = simcc_x.data<float>();
scores_data = simcc_y.data<float>();
}

std::vector<float> center;
std::vector<float> scale;
from_value(img_metas["center"], center);
from_value(img_metas["scale"], scale);
PoseDetectorOutput output;

float* keypoints_data = keypoints.data<float>();
float* scores_data = scores.data<float>();
float scale_value = 200, x = -1, y = -1, s = 0;
for (int i = 0; i < simcc_x.shape(1); i++) {
x = *(keypoints_data + 0) / simcc_split_ratio_;
y = *(keypoints_data + 1) / simcc_split_ratio_;
x = *(keypoints_data++) / simcc_split_ratio_;
y = *(keypoints_data++) / simcc_split_ratio_;
s = *(scores_data++);

x = x * scale[0] * scale_value / input_size_[0] + center[0] - scale[0] * scale_value * 0.5;
y = y * scale[1] * scale_value / input_size_[1] + center[1] - scale[1] * scale_value * 0.5;
s = *(scores_data + 0);
output.key_points.push_back({{x, y}, s});
keypoints_data += 2;
scores_data += 1;
}
return to_value(output);
}
Expand Down Expand Up @@ -104,6 +113,7 @@ class SimCCLabelDecode : public MMPose {

private:
bool flip_test_{false};
bool export_postprocess_{false};
bool shift_heatmap_{false};
float simcc_split_ratio_{2.0};
std::vector<int> input_size_{192, 256};
Expand Down
5 changes: 5 additions & 0 deletions mmdeploy/codebase/mmpose/codecs/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Copyright (c) OpenMMLab. All rights reserved.

from .post_processing import get_simcc_maximum

__all__ = ['get_simcc_maximum']
33 changes: 33 additions & 0 deletions mmdeploy/codebase/mmpose/codecs/post_processing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch


def get_simcc_maximum(simcc_x: torch.Tensor,
simcc_y: torch.Tensor) -> torch.Tensor:
"""Get maximum response location and value from simcc representations.

rewrite to support `torch.Tensor` input type.

Args:
simcc_x (torch.Tensor): x-axis SimCC in shape (N, K, Wx)
simcc_y (torch.Tensor): y-axis SimCC in shape (N, K, Wy)

Returns:
tuple:
- locs (torch.Tensor): locations of maximum heatmap responses in shape
(N, K, 2)
- vals (torch.Tensor): values of maximum heatmap responses in shape
(N, K)
"""
N, K, _ = simcc_x.shape
simcc_x = simcc_x.flatten(0, 1)
simcc_y = simcc_y.flatten(0, 1)
x_locs = simcc_x.argmax(dim=1, keepdim=True)
y_locs = simcc_y.argmax(dim=1, keepdim=True)
locs = torch.cat((x_locs, y_locs), dim=1).to(torch.float32)
max_val_x, _ = simcc_x.max(dim=1, keepdim=True)
max_val_y, _ = simcc_y.max(dim=1, keepdim=True)
vals, _ = torch.cat([max_val_x, max_val_y], dim=1).min(dim=1)
locs = locs.reshape(N, K, 2)
vals = vals.reshape(N, K)
return locs, vals

Check warning on line 33 in mmdeploy/codebase/mmpose/codecs/post_processing.py

View check run for this annotation

Codecov / codecov/patch

mmdeploy/codebase/mmpose/codecs/post_processing.py#L22-L33

Added lines #L22 - L33 were not covered by tests
6 changes: 5 additions & 1 deletion mmdeploy/codebase/mmpose/deploy/pose_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@
from mmengine.registry import Registry

from mmdeploy.codebase.base import CODEBASE, BaseTask, MMCodebase
from mmdeploy.utils import Codebase, Task, get_input_shape, get_root_logger
from mmdeploy.utils import (Codebase, Task, get_codebase_config,
get_input_shape, get_root_logger)


def process_model_config(
Expand Down Expand Up @@ -362,6 +363,9 @@
params['post_process'] = 'megvii'
params['modulate_kernel'] = self.model_cfg.kernel_sizes[-1]
elif codec.type == 'SimCCLabel':
export_postprocess = get_codebase_config(self.deploy_cfg).get(

Check warning on line 366 in mmdeploy/codebase/mmpose/deploy/pose_detection.py

View check run for this annotation

Codecov / codecov/patch

mmdeploy/codebase/mmpose/deploy/pose_detection.py#L366

Added line #L366 was not covered by tests
'export_postprocess', False)
params['export_postprocess'] = export_postprocess

Check warning on line 368 in mmdeploy/codebase/mmpose/deploy/pose_detection.py

View check run for this annotation

Codecov / codecov/patch

mmdeploy/codebase/mmpose/deploy/pose_detection.py#L368

Added line #L368 was not covered by tests
component = 'SimCCLabelDecode'
elif codec.type == 'RegressionLabel':
component = 'DeepposeRegressionHeadDecode'
Expand Down
12 changes: 10 additions & 2 deletions mmdeploy/codebase/mmpose/deploy/pose_detection_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,12 +101,20 @@
if self.model_cfg.model.type == 'YOLODetector':
return self.pack_yolox_pose_result(batch_outputs, data_samples)

codebase_cfg = get_codebase_config(self.deploy_cfg)
codec = self.model_cfg.codec
if isinstance(codec, (list, tuple)):
codec = codec[-1]
if codec.type == 'SimCCLabel':
batch_pred_x, batch_pred_y = batch_outputs
preds = self.head.decode((batch_pred_x, batch_pred_y))
export_postprocess = codebase_cfg.get('export_postprocess', False)

Check warning on line 109 in mmdeploy/codebase/mmpose/deploy/pose_detection_model.py

View check run for this annotation

Codecov / codecov/patch

mmdeploy/codebase/mmpose/deploy/pose_detection_model.py#L109

Added line #L109 was not covered by tests
if export_postprocess:
keypoints, scores = [_.cpu().numpy() for _ in batch_outputs]
preds = [

Check warning on line 112 in mmdeploy/codebase/mmpose/deploy/pose_detection_model.py

View check run for this annotation

Codecov / codecov/patch

mmdeploy/codebase/mmpose/deploy/pose_detection_model.py#L112

Added line #L112 was not covered by tests
InstanceData(keypoints=keypoints, keypoint_scores=scores)
]
else:
batch_pred_x, batch_pred_y = batch_outputs
preds = self.head.decode((batch_pred_x, batch_pred_y))

Check warning on line 117 in mmdeploy/codebase/mmpose/deploy/pose_detection_model.py

View check run for this annotation

Codecov / codecov/patch

mmdeploy/codebase/mmpose/deploy/pose_detection_model.py#L116-L117

Added lines #L116 - L117 were not covered by tests
elif codec.type in ['RegressionLabel', 'IntegralRegressionLabel']:
preds = self.head.decode(batch_outputs)
else:
Expand Down
4 changes: 2 additions & 2 deletions mmdeploy/codebase/mmpose/models/heads/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from . import mspn_head, yolox_pose_head # noqa: F401,F403
from . import mspn_head, simcc_head, yolox_pose_head # noqa: F401,F403

__all__ = ['mspn_head', 'yolox_pose_head']
__all__ = ['mspn_head', 'yolox_pose_head', 'simcc_head']
28 changes: 28 additions & 0 deletions mmdeploy/codebase/mmpose/models/heads/simcc_head.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmdeploy.codebase.mmpose.codecs import get_simcc_maximum
from mmdeploy.core import FUNCTION_REWRITER
from mmdeploy.utils import get_codebase_config


@FUNCTION_REWRITER.register_rewriter('mmpose.models.heads.RTMCCHead.forward')
@FUNCTION_REWRITER.register_rewriter('mmpose.models.heads.SimCCHead.forward')
def simcc_head__forward(self, feats):
"""Rewrite `forward` of SimCCHead for default backend.

Args:
feats (tuple[Tensor]): Input features.
Returns:
key-points (torch.Tensor): Output keypoints in
shape of (N, K, 3)
"""
ctx = FUNCTION_REWRITER.get_context()
simcc_x, simcc_y = ctx.origin_func(self, feats)
codebase_cfg = get_codebase_config(ctx.cfg)
export_postprocess = codebase_cfg.get('export_postprocess', False)

Check warning on line 21 in mmdeploy/codebase/mmpose/models/heads/simcc_head.py

View check run for this annotation

Codecov / codecov/patch

mmdeploy/codebase/mmpose/models/heads/simcc_head.py#L18-L21

Added lines #L18 - L21 were not covered by tests
if not export_postprocess:
return simcc_x, simcc_y
assert self.decoder.use_dark is False, \

Check warning on line 24 in mmdeploy/codebase/mmpose/models/heads/simcc_head.py

View check run for this annotation

Codecov / codecov/patch

mmdeploy/codebase/mmpose/models/heads/simcc_head.py#L23-L24

Added lines #L23 - L24 were not covered by tests
'Do not support SimCCLabel with use_dark=True'
pts, scores = get_simcc_maximum(simcc_x, simcc_y)
pts /= self.decoder.simcc_split_ratio
return pts, scores

Check warning on line 28 in mmdeploy/codebase/mmpose/models/heads/simcc_head.py

View check run for this annotation

Codecov / codecov/patch

mmdeploy/codebase/mmpose/models/heads/simcc_head.py#L26-L28

Added lines #L26 - L28 were not covered by tests
Loading