-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path问答技术
216 lines (140 loc) · 7.03 KB
/
问答技术
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
【论文简介】KQA Pro:带有可解释性程序和准确SPARQL的大规模知识库问答数据集
https://zhuanlan.zhihu.com/p/352808683
[论文解读]KQA Pro 一个120K有SPARQL标注的KBQA数据集
https://zhuanlan.zhihu.com/p/348851375
https://github.com/BDBC-KG-NLP/QA-Survey-CN
https://github.com/shijx12/KQAPro_Baselines
华为史佳欣:基于知识图谱的复杂问题推理问答
http://www.uml.org.cn/ai/202205311.asp
针对复杂问题的知识图谱问答最新进展
https://zhuanlan.zhihu.com/p/134090164
复杂知识图谱问答综述方法、挑战和解决办法
https://blog.csdn.net/u011983997/article/details/122727274
复杂问题的知识问答技术介绍
https://zhuanlan.zhihu.com/p/184966381
论文导读 | 基于查询图生成的复杂知识图谱问答
https://www.modb.pro/db/403452
CIKM 2020 | 知识库问答复杂问题的分层查询图生成方法
https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/109567445
ACL2020 KBQA 基于查询图生成回答多跳复杂问题
https://blog.csdn.net/devcloud/article/details/108772855
TED对话策略:Dialogue Transformers
https://zhuanlan.zhihu.com/p/483823239
DIET: Lightweight Language Understanding for Dialogue System
https://blog.csdn.net/weixin_42486623/article/details/122198536
kopl
https://kopl.xlore.cn/doc/0_intro.html
KoPL:面向知识的推理问答编程语言
https://xw.qq.com/cmsid/20211110A06TZR00
ProgramTransfer:基于知识库的复杂问答
https://zhuanlan.zhihu.com/p/499048106
TransferNet:一个用于关系图多跳问答的透明有效框架
https://zhuanlan.zhihu.com/p/498409048
QQ浏览器智能问答技术探索实践
https://zhuanlan.zhihu.com/p/413822447
美团知识图谱问答技术实践与探索
https://zhuanlan.zhihu.com/p/429816769
斯坦福任泓宇:知识图谱多步推理及SMORE框架介绍
https://zhuanlan.zhihu.com/p/546169083
CCKS 2019 | 基于知识图谱的寿险问答系统
https://zhuanlan.zhihu.com/p/89983691
对话动作集定义CUED Standard Dialogue Acts
https://blog.csdn.net/iin729/article/details/109221672
项目实操:KBQA常规实现流程与医疗知识图谱问答源码解读
https://blog.csdn.net/asd8705/article/details/125059552
EMNLP 2019 结合单词级别意图识别的stack-propagation框架进行口语理解
https://zhuanlan.zhihu.com/p/85792864
【论文解读系列】NER方向:SoftLexicon(ACL 2020)
https://blog.csdn.net/ljp1919/article/details/126742431
杨韬:微信搜一搜中的智能问答技术
https://zhuanlan.zhihu.com/p/530648272
2021-ACL论文:问答检索方向论文整理
https://zhuanlan.zhihu.com/p/388148753
智能客服FAQ问答任务的技术选型探讨
https://zhuanlan.zhihu.com/p/50799128
智能问答系统:问句预处理、检索和深度语义匹配技术
https://zhuanlan.zhihu.com/p/70203821
MGIMN:用于Few-shot文本分类的多粒度交互式匹配网络
https://blog.csdn.net/be_humble/article/details/127652630
https://github.com/ymcui/expmrc
知识库问题生成(KBQG)技术介绍
https://zhuanlan.zhihu.com/p/274735752?utm_source=wechat_session
A Review on Question Generation from Natural Language Text阅读笔记
https://blog.csdn.net/Cc2018qaq/article/details/121973874
BERTScore: Evaluating Text Generation with BERT
https://arxiv.org/abs/1904.09675v3
问题生成领域的评估
https://zhuanlan.zhihu.com/p/569381350
面向文本生成任务的评估指标
https://zhuanlan.zhihu.com/p/380929670
文本生成13:万字长文梳理文本生成评价指标
https://zhuanlan.zhihu.com/p/144182853
Active Evaluation: Efficient NLG Evaluation with Few Pairwise Comparisons
https://arxiv.org/abs/2203.06063
Repairing the Cracked Foundation: A Survey of Obstacles in Evaluation Practices for Generated Text
https://arxiv.org/abs/2202.06935
Analyzing and Evaluating Faithfulness in Dialogue Summarization
https://arxiv.org/abs/2210.11777
基于深度神经网络的自动问题生成
https://zhuanlan.zhihu.com/p/393610558
Question Generation
https://paperswithcode.com/task/question-generation
A Survey of Evaluation Metrics Used for NLG Systems
https://arxiv.org/abs/2008.12009
中文机器阅读理解(片段抽取)数据集整理
https://zhuanlan.zhihu.com/p/395788175
Question-Generation-Paper-List
https://github.com/teacherpeterpan/Question-Generation-Paper-List
Assisting the Human Fact-Checkers: Detecting All Previously Fact-Checked Claims in a Document
https://arxiv.org/abs/2109.07410
临床问答中领域适配的多样化问题生成
https://zhuanlan.zhihu.com/p/342603647
Asking Questions the Human Way: Scalable Question-Answer Generation from Text Corpus
https://paperswithcode.com/paper/asking-questions-the-human-way-scalable
以文档为额外知识的生成式对话
https://www.jiqizhixin.com/articles/2020-09-23-2
https://github.com/sherlcok314159/ChineseMRC-Data
Fusion-in-decoder 生成式答案踩坑
https://zhuanlan.zhihu.com/p/603091623
Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering
https://arxiv.org/abs/2007.01282
https://github.com/facebookresearch/FiD
Fusion-in-Decoder (FiD) 简读
https://zhuanlan.zhihu.com/p/564043932
基于检索的自然语言处理模型研究梳理
https://blog.csdn.net/Kaiyuan_sjtu/article/details/123059539
ACL-2022|Internet-Augmented Dialogue Generation
https://zhuanlan.zhihu.com/p/591603674
ReAct: Synergizing Reasoning and Acting in Language Models
https://arxiv.org/abs/2210.03629
信息搜索QA中的挑战:无法回答的问题和段落检索
https://zhuanlan.zhihu.com/p/580057408
QA-based事实一致性检测与改进综述
https://zhuanlan.zhihu.com/p/285770986
ChatGPT作为知识库问答系统的问答能力评测
https://zhuanlan.zhihu.com/p/613649876
Ask what's missing and what's useful: Improving Clarification Question Generation using Global Knowledge
https://arxiv.org/abs/2104.06828
RoR: Read-over-Read for Long Document Machine Reading Comprehension
https://arxiv.org/abs/2109.04780
Answering while Summarizing: Multi-task Learning for Multi-hop QA with Evidence Extraction
https://blog.csdn.net/qq_36426650/article/details/117589980
https://arxiv.org/abs/1905.08511
Learning to Retrieve In-Context Examples for Large Language Models
https://arxiv.org/abs/2307.07164
《Learning To Retrieve Prompts for In-Context Learning 》论文阅读
https://zhuanlan.zhihu.com/p/530531916
RecallM: An Architecture for Temporal Context Understanding and Question Answering
https://arxiv.org/abs/2307.02738
Transformer Memory as a Differentiable Search Index
https://zhuanlan.zhihu.com/p/633411368
ChatGPT时代,垂直搜索如何破?
https://blog.csdn.net/VucNdnrzk8iwX/article/details/129722260
A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning
https://arxiv.org/abs/2304.14856
Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation
https://arxiv.org/abs/2206.10128
Understanding Differential Search Index for Text Retrieval
https://arxiv.org/abs/2305.02073
Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement
https://arxiv.org/abs/2305.14497