-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathstep3_train_bald_male_data.py
195 lines (146 loc) · 7.63 KB
/
step3_train_bald_male_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os.path
import argparse
import cv2
import numpy as np
from styleGAN2_ada_model.stylegan2_ada_generator import StyleGAN2adaGenerator
from classifier.src.feature_extractor.hair_mask_extractor import get_hair_mask, get_parsingNet
from tqdm import tqdm
from classifier.classify import get_model, check_hair
from diffuse.inverter_remove_hair import InverterRemoveHair
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
def parse_args():
"""Parses arguments."""
parser = argparse.ArgumentParser(
description='Training bald male data using hair boundary.')
parser.add_argument('--dataset_name', type=str, required=True,
help='Training dataset name. (required)')
parser.add_argument('--num', type=int, default=2500,
help='Training data num')
parser.add_argument('--hair_boundary_dir', type=str,
default='./data/boundaries/stylegan2_ada/coarse/stylegan2_ffhq_hair_w_male',
help='Directory to load hair boundary')
parser.add_argument('--truncation_psi', type=float, default='0.75')
parser.add_argument("--save_temp",
help="if set, save temp images",
action="store_true")
parser.add_argument('--learning_rate', type=float, default=0.01,
help='Learning rate for optimization. ')
parser.add_argument('--num_iterations', type=int, default=150,
help='Number of optimization iterations. ')
parser.add_argument('--loss_weight_feat', type=float, default=5e-5,
help='The perceptual loss weight')
parser.add_argument('--loss_weight_id', type=float, default=1.0,
help='The facial identity loss weight')
return parser.parse_args()
def run():
args = parse_args()
model_name = 'stylegan2_ada'
latent_space_type = 'wp'
training_path = './training_runs/male_training'
dataset_path = './training_runs/dataset'
output_dir = os.path.join(training_path, args.dataset_name)
data_dir = os.path.join(dataset_path, args.dataset_name)
print(f'============= Training based on dataset {data_dir}, results will be saved to {output_dir} =============')
os.makedirs(output_dir, exist_ok=True)
temp_code_dir = os.path.join(output_dir, 'temp_codes')
mask_dir = os.path.join(output_dir, 'mask')
temp_img_dir = os.path.join(output_dir, 'temp_imgs')
res_code_dir = os.path.join(output_dir, 'res_wp_codes')
res_img_dir = os.path.join(output_dir, 'res_img')
os.makedirs(temp_code_dir, exist_ok=True)
os.makedirs(mask_dir, exist_ok=True)
os.makedirs(temp_img_dir, exist_ok=True)
os.makedirs(res_code_dir, exist_ok=True)
os.makedirs(res_img_dir, exist_ok=True)
print(f'Initializing generator.')
model = StyleGAN2adaGenerator(model_name, logger=None, truncation_psi=args.truncation_psi)
inverter = InverterRemoveHair(
model_name,
model,
learning_rate=args.learning_rate,
reconstruction_loss_weight=1.0,
perceptual_loss_weight=args.loss_weight_feat,
truncation_psi=args.truncation_psi,
logger=None,
use_id_loss=True,
loss_weight_id=args.loss_weight_id)
kwargs = {'latent_space_type': latent_space_type}
print(f'Preparing boundary.')
hair_boundarys = np.load(os.path.join(args.hair_boundary_dir, 'boundary.npy'))
hair_boundarys = np.reshape(hair_boundarys, (1, 1, 512))
hair_intercepts = np.load(os.path.join(args.hair_boundary_dir, 'intercepts.npy'))
gender_scores_path = os.path.join(data_dir, 'gender_scores.npy')
gender_scores = np.load(gender_scores_path)
male_index = np.where(gender_scores == 1)[0]
total_num = min(len(male_index), args.num)
print(f'Editing {total_num} samples.')
pbar = tqdm(total=total_num)
parsingNet = get_parsingNet(save_pth='./ckpts/face_parsing.pth')
print(f'Preparing latent codes.')
input_latent_code_path = os.path.join(data_dir, 'wp.npy')
input_latent_codes = np.load(input_latent_code_path)
hair_checker = get_model(mode='hair')
for img_index in male_index[:total_num]:
pbar.update(1)
if os.path.exists(os.path.join(res_img_dir, f'{img_index:06d}.jpg')):
continue
latent_codes_origin = input_latent_codes[img_index, :, :][np.newaxis, :]
distance = np.abs(
(np.sum(hair_boundarys * latent_codes_origin, axis=2, keepdims=True) + hair_intercepts) / np.linalg.norm(
hair_boundarys, axis=2, keepdims=True))
edited_latent_codes = latent_codes_origin.copy()
# latent code manipulation
count = 1
score = 1
max_bound = np.sum(distance) / 4
while score == 1 and count < max_bound:
edited_latent_codes -= hair_boundarys
temp = model.easy_synthesize(edited_latent_codes,
**kwargs,
generate_style=False,
generate_image=True)['image'][0]
score = int(check_hair(temp[:, :, ::-1], hair_checker))
count += 1
if os.path.exists(f'{data_dir}/{img_index:06d}.jpg'):
origin_img = cv2.imread(f'{data_dir}/{img_index:06}.jpg')
else:
origin_img = model.easy_synthesize(latent_codes_origin,
**kwargs,
generate_style=False,
generate_image=True)['image'][0][:, :, ::-1]
hair_mask = get_hair_mask(img_path=origin_img, net=parsingNet, include_hat=True)
mask_path = os.path.join(mask_dir, f'{img_index:06d}.png')
cv2.imwrite(mask_path, hair_mask)
origin_mask = hair_mask
# style mixing
outputs = model.easy_style_mixing(latent_codes=edited_latent_codes,
style_range=range(7, 18),
style_codes=latent_codes_origin,
mix_ratio=0.8,
**kwargs
)
edited_img = outputs['image'][0][:, :, ::-1]
synthesis_image = origin_img * (1 - origin_mask // 255) + edited_img * (origin_mask // 255)
if args.save_temp:
np.save(os.path.join(temp_code_dir, f'{img_index:06d}.npy'), outputs['mixed_wps'])
synthesis_image_save_path = os.path.join(temp_img_dir, f'{img_index:06d}.jpg')
cv2.imwrite(synthesis_image_save_path, synthesis_image)
mask = hair_mask
mask_dilate = cv2.dilate(mask, kernel=np.ones((15, 15), np.uint8))
mask_dilate_blur = cv2.blur(mask_dilate, ksize=(25, 25))
mask_dilate_blur = mask + (255 - mask) / 255 * mask_dilate_blur
init_code = outputs['mixed_wps']
# diffusion
target_image = synthesis_image[:, :, ::-1]
code_wp, code_style, viz_result = inverter.easy_mask_diffuse(target=target_image,
init_code=init_code,
mask=mask_dilate_blur,
iteration=args.num_iterations)
latent_code_save_path = os.path.join(res_code_dir, f'{img_index:06d}.npy')
np.save(latent_code_save_path, code_wp)
image_save_path = os.path.join(res_img_dir, f'{img_index:06d}.jpg')
cv2.imwrite(image_save_path, viz_result[:, :, ::-1])
print(f'\n============= Done =============')
if __name__ == '__main__':
run()