forked from Z3Prover/z3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrafficjam.py
128 lines (98 loc) · 3.35 KB
/
trafficjam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from z3 import *
class Car():
def __init__(self, is_vertical, base_pos, length, start, color):
self.is_vertical = is_vertical
self.base = base_pos
self.length = length
self.start = start
self.color = color
def __eq__(self, other):
return self.color == other.color
def __ne__(self, other):
return self.color != other.color
dimension = 6
red_car = Car(False, 2, 2, 3, "red")
cars = [
Car(True, 0, 3, 0, 'yellow'),
Car(False, 3, 3, 0, 'blue'),
Car(False, 5, 2, 0, "brown"),
Car(False, 0, 2, 1, "lgreen"),
Car(True, 1, 2, 1, "light blue"),
Car(True, 2, 2, 1, "pink"),
Car(True, 2, 2, 4, "dark green"),
red_car,
Car(True, 3, 2, 3, "purple"),
Car(False, 5, 2, 3, "light yellow"),
Car(True, 4, 2, 0, "orange"),
Car(False, 4, 2, 4, "black"),
Car(True, 5, 3, 1, "light purple")
]
num_cars = len(cars)
B = BoolSort()
bv3 = BitVecSort(3)
state = Function('state', [ bv3 for c in cars] + [B])
def num(i):
return BitVecVal(i,bv3)
def bound(i):
return Const(cars[i].color, bv3)
fp = Fixedpoint()
fp.set("fp.engine","datalog")
fp.set("datalog.generate_explanations",True)
fp.declare_var([bound(i) for i in range(num_cars)])
fp.register_relation(state)
def mk_state(car, value):
return state([ (num(value) if (cars[i] == car) else bound(i)) for i in range(num_cars)])
def mk_transition(row, col, i0, j, car0):
body = [mk_state(car0, i0)]
for index in range(num_cars):
car = cars[index]
if car0 != car:
if car.is_vertical and car.base == col:
for i in range(dimension):
if i <= row and row < i + car.length and i + car.length <= dimension:
body += [bound(index) != num(i)]
if car.base == row and not car.is_vertical:
for i in range(dimension):
if i <= col and col < i + car.length and i + car.length <= dimension:
body += [bound(index) != num(i)]
s = "%s %d->%d" % (car0.color, i0, j)
fp.rule(mk_state(car0, j), body, s)
def move_down(i, car):
free_row = i + car.length
if free_row < dimension:
mk_transition(free_row, car.base, i, i + 1, car)
def move_up(i, car):
free_row = i - 1
if 0 <= free_row and i + car.length <= dimension:
mk_transition(free_row, car.base, i, i - 1, car)
def move_left(i, car):
free_col = i - 1;
if 0 <= free_col and i + car.length <= dimension:
mk_transition(car.base, free_col, i, i - 1, car)
def move_right(i, car):
free_col = car.length + i
if free_col < dimension:
mk_transition(car.base, free_col, i, i + 1, car)
# Initial state:
fp.fact(state([num(cars[i].start) for i in range(num_cars)]))
# Transitions:
for car in cars:
for i in range(dimension):
if car.is_vertical:
move_down(i, car)
move_up(i, car)
else:
move_left(i, car)
move_right(i, car)
def get_instructions(ans):
lastAnd = ans.arg(0).children()[-1]
trace = lastAnd.children()[1]
while trace.num_args() > 0:
print(trace.decl())
trace = trace.children()[-1]
goal = state([ (num(4) if cars[i] == red_car else bound(i)) for i in range(num_cars)])
fp.query(goal)
get_instructions(fp.get_answer())
del goal
del state
del fp