-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
274 lines (222 loc) · 9.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import sys
import torch
import torch.nn.functional as F
import numpy as np
from sklearn.preprocessing import StandardScaler, normalize
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, balanced_accuracy_score
from tqdm import tqdm
### Losses for Self-Supervised Learning
'''
Code acquired from https://github.com/omipan/camera_traps_self_supervised/blob/main/losses.py
'''
def triplet_loss(emb, args, dist_type='cosine', margin=0.3):
# NOTE currently just randomly selects indices as negatives
b_size = emb.shape[0]
inds = torch.randint(0, b_size, (b_size//2, ))
mask = (inds != torch.arange(b_size//2)).float().cuda()
if dist_type == 'l2':
loss = (mask*F.triplet_margin_loss(emb[:b_size//2, :], emb[b_size//2:, :],
emb[inds, :], margin=margin, reduction='none')).mean()
elif dist_type == 'cosine':
pos_dist = (-F.cosine_similarity(emb[:b_size//2, :], emb[b_size//2:, :], dim=1) + 1)/2
neg_dist = (-F.cosine_similarity(emb[:b_size//2, :], emb[inds, :], dim=1) + 1)/2
hinge_dist = torch.clamp(margin + pos_dist - neg_dist, min=0.0)
loss = (mask*hinge_dist).mean()
return loss
'''
Code acquired from https://github.com/omipan/camera_traps_self_supervised/blob/main/losses.py
'''
def nt_xent(x1, x2, args):
# assumes that the input data is stacked i.e.
# x1 (B1 C H W) + x2 (B2 C H W) - B1 typically == B2
x = torch.cat((x1, x2), 0)
x = F.normalize(x, dim=1)
x_scores = x @ x.t()
x_scale = x_scores / args['temperature'] # scale with temperature
# (2N-1)-way softmax without the score of i-th entry itself.
# Set the diagonals to be large negative values, which become zeros after softmax.
x_scale = x_scale - torch.eye(x_scale.size(0)).to(x_scale.device) * 1e5
# targets 2N elements.
if x1.shape[0] == 1:
# last element is the target i.e. all should be the same
targets = torch.zeros(x.shape[0], device=x.device).long()
x_scale[0,0] = 1.0 / args['temperature']
else:
# data is stacked in two halves
targets = torch.arange(x.shape[0], device=x.device).long()
targets[:x.shape[0]//2] += x.shape[0]//2
targets[x.shape[0]//2:] -= x.shape[0]//2
return F.cross_entropy(x_scale, targets)
def adapter_train(train_loader,optimizer,adapter,criterion,args):
'''
Utility function that trains the MLP adapter with few-shot samples on top of frozen features.
'''
adapter.train()
for epoch in range(args['epochs']):
losses = []
for batch_num, input_data in enumerate(train_loader):
optimizer.zero_grad()
x, y = input_data
x = x.to(args['device']).float()
y = y.to(args['device'])
output = adapter(x)
loss = criterion(output, y)
loss.backward()
losses.append(loss.item())
optimizer.step()
if batch_num % 40 == 0:
print('\tEpoch %d | Batch %d | Loss %6.2f' % (epoch, batch_num, loss.item()))
#print('Epoch %d | Loss %6.2f' % (epoch, sum(losses)/len(losses)))
def adapter_predict(adapter,loader,args,return_logits=False):
'''
Utility function that used the tuned MLP adapter to make predictions.
'''
adapter.eval()
preds = []
all_logits = torch.Tensor().to(args['device'])
with torch.no_grad():
for input_data in loader:
if args['finetune_type']!="end_to_end":
x, y = input_data
else:
x = input_data['im']
y = input_data['target']
x = x.to(args['device']).float()
y = y.to(args['device'])
logits = adapter(x)
all_logits=torch.concat((all_logits,logits))
output = logits.argmax(dim=1)
preds = preds+list(output.cpu().numpy())
if return_logits:
return all_logits
else:
return preds
'''
Code acquired from https://github.com/omipan/camera_traps_self_supervised/blob/main/utils.py
'''
def linear_eval_all(model, train_loader, test_loader, args, inds, amts, grid_search=False, target_type='target'):
'''
Utility function that can be used to linearly evaluate the quality of the representations learnt by the self-supervised learning pretext task.
'''
# extract train and test features - only do this once
x_train_o, y_train_o, ids_train = get_features(model, train_loader, args, target_type)
x_test_o, y_test_o, ids_test = get_features(model, test_loader, args, target_type)
# loop over the different data splits
res = {}
for ii in range(len(inds)):
# select subset of data
x_train = x_train_o[inds[ii], :]
y_train = y_train_o[inds[ii]]
# make sure the labels are consistent and range from 0 to C-1
_, inv_labels = np.unique(np.hstack((y_train, y_test_o)), return_inverse=True)
y_train = inv_labels[:y_train.shape[0]]
y_test = inv_labels[y_train.shape[0]:]
# perform linear evaluation
test_acc, test_acc_bal = train_linear(x_train, y_train, x_test_o, y_test, args['lin_max_iter'], grid_search)
amt = str(amts[ii])
res['test_acc_' + amt] = test_acc
res['test_acc_bal_' + amt] = test_acc_bal
print('Linear eval ' + (amt+'%').rjust(4) + ': acc {:.2f}, bal acc {:.2f}'.format(test_acc, test_acc_bal))
return res
'''
Code acquired from https://github.com/omipan/camera_traps_self_supervised/blob/main/utils.py
'''
def get_features(model, loader, args, target_type, op_type='feat', standard_backbone=False):
'''
Return features given pretrained encoder
'''
# extract features from the model
if op_type == 'feat':
only_feats = True
else:
only_feats = False
model.eval()
features = []
targets = []
ids = []
with torch.no_grad():
for data in loader:
data['im'] = data['im'].to(args['device'])
if args['use_clip']:
features.append(model.encode_image(data['im']).data.cpu().numpy())
elif standard_backbone:
features.append(model(data['im']).data.cpu().numpy())
else:
op = model(data['im'], only_feats=only_feats)
features.append(op[op_type].data.cpu().numpy())
targets.append(data[target_type].cpu().numpy())
ids.append(data['id'].cpu().numpy())
return np.vstack(features), np.hstack(targets), np.hstack(ids)
'''
Code acquired from https://github.com/omipan/camera_traps_self_supervised/blob/main/utils.py
'''
def train_linear(x_train_ip, y_train, x_test_ip, y_test, max_iter, grid_search):
'''
Utility used within linear evaluation routine (linear_eval_all.py)
'''
x_train = x_train_ip.astype(np.float32).copy()
x_test = x_test_ip.astype(np.float32).copy()
scaler = StandardScaler().fit(x_train)
x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
x_train = normalize(x_train, norm='l2')
x_test = normalize(x_test, norm='l2')
rseed = 0
if grid_search:
parameters = {'C' : [0.001, 0.01, 0.1, 1, 10, 100]}
cls = LogisticRegression(random_state=rseed, tol=1e-4, multi_class='multinomial', C=1., dual=False, max_iter=max_iter)
clf = GridSearchCV(cls, parameters, n_jobs=-1, cv=StratifiedKFold(n_splits=5, shuffle=True, random_state=rseed), refit=True)
clf.fit(x_train, y_train)
else:
clf = LogisticRegression(random_state=rseed, tol=1e-4, multi_class='multinomial', C=1., dual=False, max_iter=max_iter, n_jobs=-1).fit(x_train, y_train)
y_pred = clf.predict(x_test)
acc = accuracy_score(y_test, y_pred)*100
bal_acc = balanced_accuracy_score(y_test, y_pred)*100
return acc, bal_acc
def accuracy(output, targets, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = targets.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(targets.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name):
self.name = name
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
'''
Code acquired from https://github.com/gaopengcuhk/Tip-Adapter/blob/main/tip_adapter_ImageNet.py
'''
def zeroshot_classifier(classnames, templates, model):
import clip
with torch.no_grad():
zeroshot_weights = []
for classname in classnames:
texts = [template.format(classname) for template in templates] # format with class
texts = clip.tokenize(texts).cuda() # tokenize
class_embeddings = model.encode_text(texts) # embed with text encoder
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
return zeroshot_weights