-
Notifications
You must be signed in to change notification settings - Fork 48
/
jtag_xsvf_player.h
996 lines (875 loc) · 29.2 KB
/
jtag_xsvf_player.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
#ifndef _JTAG_XSVF_PLAYER_H_
#define _JTAG_XSVF_PLAYER_H_
/*
Arduino JTAG Player for Afterburner GAL project
---------------------------------------
Adapted from JTAG library 1.0.15 by Marcelo Jimenez
https://github.com/mrjimenez/JTAG
This port:
* improves flash size on AVR MCU (about 6.5kb vs 11kb)
* allows to allocate JTAG internal buffers temporarily within a shared
global buffer (heap). Define XSVF_HEAP to enable such feature:
uint8_t heap[900];
#define XSVF_HEAP heap
#include "jtag_xsvf_player.h"
* reduces the code to a single .h file
Use the original JTAG libray python scripts to upload XSVF files
from your PC:
./xsvf -p /dev/ttyACM0 my_file.xsvf
Arduino usage:
jtag_port_t jport;
Serial.begin(115200);
//assign jtag pins (vref pin checks the cable is plugged in)
jport.tms = 12;
jport.tdi = 2;
jport.tdo = 4;
jport.tck = 3;
jport.vref = 10;
//process XSVF data received from serial port
jtag_play_xsvf(&jport);
*/
//value bigger than 63 may cause reading errors on AVR MCUs.
#define XSVF_BUF_SIZE 62
#define XSVF_DEBUG 0
#define XSVF_CALC_CSUM 1
#define XSVF_IGNORE_NOMATCH 0
#define XCOMPLETE 0
#define XTDOMASK 1
#define XSIR 2
#define XSDR 3
#define XRUNTEST 4
#define XRESERVED_5 5
#define XRESERVED_6 6
#define XREPEAT 7
#define XSDRSIZE 8
#define XSDRTDO 9
#define XSETSDRMASKS 10
#define XSDRINC 11
#define XSDRB 12
#define XSDRC 13
#define XSDRE 14
#define XSDRTDOB 15
#define XSDRTDOC 16
#define XSDRTDOE 17
#define XSTATE 18
#define XENDIR 19
#define XENDDR 20
#define XSIR2 21
#define XCOMMENT 22
#define XWAIT 23
#define XWAITSTATE 24
#define XTRST 28
#define S_MAX_CHAIN_SIZE_BYTES 129
#define S_MAX_CHAIN_SIZE_BITS (S_MAX_CHAIN_SIZE_BYTES * 8)
#define STATE_RUN_TEST_IDLE 1
#define STATE_PAUSE_DR 6
#define STATE_PAUSE_IR 13
#define ERR_IO 1
#define ERR_XSIR_SIZE 2
#define ERR_XSDRSIZE 3
#define ERR_XENDIR 4
#define ERR_XENDDR 5
#define ERR_XSDR 6
#define ERR_INSTR_NOT_IMPLEMENTED 99
#define ERR_DR_CHECK_FAILED 101
/*
* Low nibble : TMS == 0
* High nibble: TMS == 1
*/
#define TMS_T(TMS_HIGH_STATE, TMS_LOW_STATE) (((TMS_HIGH_STATE) << 4) | (TMS_LOW_STATE))
#define XSTATE_TEST_LOGIC_RESET 0
#define XSTATE_RUN_TEST_IDLE 1
#define XSTATE_SELECT_DR_SCAN 2
#define XSTATE_CAPTURE_DR 3
#define XSTATE_SHIFT_DR 4
#define XSTATE_EXIT1_DR 5
#define XSTATE_PAUSE_DR 6
#define XSTATE_EXIT2_DR 7
#define XSTATE_UPDATE_DR 8
#define XSTATE_SELECT_IR_SCAN 9
#define XSTATE_CAPTURE_IR 10
#define XSTATE_SHIFT_IR 11
#define XSTATE_EXIT1_IR 12
#define XSTATE_PAUSE_IR 13
#define XSTATE_EXIT2_IR 14
#define XSTATE_UPDATE_IR 15
#define TMS_T00 /* STATE_TEST_LOGIC_RESET */ TMS_T(XSTATE_TEST_LOGIC_RESET, XSTATE_RUN_TEST_IDLE)
#define TMS_T01 /* STATE_RUN_TEST_IDLE */ TMS_T(XSTATE_SELECT_DR_SCAN, XSTATE_RUN_TEST_IDLE)
#define TMS_T02 /* STATE_SELECT_DR_SCAN */ TMS_T(XSTATE_SELECT_IR_SCAN, XSTATE_CAPTURE_DR)
#define TMS_T03 /* STATE_CAPTURE_DR */ TMS_T(XSTATE_EXIT1_DR, XSTATE_SHIFT_DR)
#define TMS_T04 /* STATE_SHIFT_DR */ TMS_T(XSTATE_EXIT1_DR, XSTATE_SHIFT_DR)
#define TMS_T05 /* STATE_EXIT1_DR */ TMS_T(XSTATE_UPDATE_DR, XSTATE_PAUSE_DR)
#define TMS_T06 /* STATE_PAUSE_DR */ TMS_T(XSTATE_EXIT2_DR, XSTATE_PAUSE_DR)
#define TMS_T07 /* STATE_EXIT2_DR */ TMS_T(XSTATE_UPDATE_DR, XSTATE_SHIFT_DR)
#define TMS_T08 /* STATE_UPDATE_DR */ TMS_T(XSTATE_SELECT_DR_SCAN, XSTATE_RUN_TEST_IDLE)
#define TMS_T09 /* STATE_SELECT_IR_SCAN */ TMS_T(XSTATE_TEST_LOGIC_RESET, XSTATE_CAPTURE_IR)
#define TMS_T10 /* STATE_CAPTURE_IR */ TMS_T(XSTATE_EXIT1_IR, XSTATE_SHIFT_IR)
#define TMS_T11 /* STATE_SHIFT_IR */ TMS_T(XSTATE_EXIT1_IR, XSTATE_SHIFT_IR)
#define TMS_T12 /* STATE_EXIT1_IR */ TMS_T(XSTATE_UPDATE_IR, XSTATE_PAUSE_IR)
#define TMS_T13 /* STATE_PAUSE_IR */ TMS_T(XSTATE_EXIT2_IR, XSTATE_PAUSE_IR)
#define TMS_T14 /* STATE_EXIT2_IR */ TMS_T(XSTATE_UPDATE_IR, XSTATE_SHIFT_IR)
#define TMS_T15 /* STATE_UPDATE_IR */ TMS_T(XSTATE_SELECT_DR_SCAN, XSTATE_RUN_TEST_IDLE)
#define BITSTR(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P) ( \
((uint16_t)(A) << 15) | \
((uint16_t)(B) << 14) | \
((uint16_t)(C) << 13) | \
((uint16_t)(D) << 12) | \
((uint16_t)(E) << 11) | \
((uint16_t)(F) << 10) | \
((uint16_t)(G) << 9) | \
((uint16_t)(H) << 8) | \
((uint16_t)(I) << 7) | \
((uint16_t)(J) << 6) | \
((uint16_t)(K) << 5) | \
((uint16_t)(L) << 4) | \
((uint16_t)(M) << 3) | \
((uint16_t)(N) << 2) | \
((uint16_t)(O) << 1) | \
((uint16_t)(P) << 0) )
/*
* The index of this vector is the current state. The i-th bit tells you the
* value TMS must assume in order to go to state "i".
------------------------------------------------------------------------------------------------------------
| | || F | E | D | C || B | A | 9 | 8 || 7 | 6 | 5 | 4 || 3 | 2 | 1 | 0 || HEX |
------------------------------------------------------------------------------------------------------------
| STATE_TEST_LOGIC_RESET | 0 || 0 | 0 | 0 | 0 || 0 | 0 | 0 | 0 || 0 | 0 | 0 | 0 || 0 | 0 | 0 | 1 || 0x0001 |
| STATE_RUN_TEST_IDLE | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 0 | 1 || 0xFFFD |
| STATE_SELECT_DR_SCAN | 2 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 0 || 0 | 0 | 0 | 0 || 0 | x | 1 | 1 || 0xFE03 |
| STATE_CAPTURE_DR | 3 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 0 || x | 1 | 1 | 1 || 0xFFE7 |
| STATE_SHIFT_DR | 4 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 0 || 1 | 1 | 1 | 1 || 0xFFEF |
| STATE_EXIT1_DR | 5 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0 | 0 | x | 0 || 1 | 1 | 1 | 1 || 0xFF0F |
| STATE_PAUSE_DR | 6 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 0 | 1 | 1 || 1 | 1 | 1 | 1 || 0xFFBF |
| STATE_EXIT2_DR | 7 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || x | 0 | 0 | 0 || 1 | 1 | 1 | 1 || 0xFF0F |
| STATE_UPDATE_DR | 8 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | x || 1 | 1 | 1 | 1 || 1 | 1 | 0 | 1 || 0xFEFD |
| STATE_SELECT_IR_SCAN | 9 || 0 | 0 | 0 | 0 || 0 | 0 | x | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0x01FF |
| STATE_CAPTURE_IR | A || 1 | 1 | 1 | 1 || 0 | x | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0xF3FF |
| STATE_SHIFT_IR | B || 1 | 1 | 1 | 1 || 0 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0xF7FF |
| STATE_EXIT1_IR | C || 1 | 0 | 0 | x || 0 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0x87FF |
| STATE_PAUSE_IR | D || 1 | 1 | 0 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0xDFFF |
| STATE_EXIT2_IR | E || 1 | x | 0 | 0 || 0 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0x87FF |
| STATE_UPDATE_IR | F || x | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 0 | 1 || 0x7FFD |
------------------------------------------------------------------------------------------------------------
*/
#define BS00 /* STATE_TEST_LOGIC_RESET */ BITSTR( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 )
#define BS01 /* STATE_RUN_TEST_IDLE */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1 )
#define BS02 /* STATE_SELECT_DR_SCAN */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1 )
#define BS03 /* STATE_CAPTURE_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1 )
#define BS04 /* STATE_SHIFT_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1 )
#define BS05 /* STATE_EXIT1_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1 )
#define BS06 /* STATE_PAUSE_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 )
#define BS07 /* STATE_EXIT2_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1 )
#define BS08 /* STATE_UPDATE_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1 )
#define BS09 /* STATE_SELECT_IR_SCAN */ BITSTR( 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
#define BS10 /* STATE_CAPTURE_IR */ BITSTR( 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
#define BS11 /* STATE_SHIFT_IR */ BITSTR( 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
#define BS12 /* STATE_EXIT1_IR */ BITSTR( 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
#define BS13 /* STATE_PAUSE_IR */ BITSTR( 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
#define BS14 /* STATE_EXIT2_IR */ BITSTR( 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
#define BS15 /* STATE_UPDATE_IR */ BITSTR( 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1 )
typedef struct xsvf_t {
uint8_t* xsvf_tdo_mask;
uint8_t* xsvf_tdi;
uint8_t* xsvf_tdo;
uint8_t* xsvf_tdo_expected;
uint8_t* xsvf_address_mask;
uint8_t* xsvf_data_mask;
uint32_t rdpos;
uint32_t wrpos;
#if XSVF_CALC_CSUM
uint32_t csum;
#endif
uint16_t instruction_counter;
uint8_t error;
uint8_t xcomplete;
uint16_t sirsize_bits;
uint16_t sirsize_bytes;
uint32_t sdrsize_bits;
uint32_t sdrsize_bytes;
uint32_t runtest;
uint8_t repeat;
uint8_t next_state;
uint8_t endir_state;
uint8_t enddr_state;
uint32_t wait_time_usecs;
uint8_t wait_start_state;
uint8_t wait_end_state;
uint8_t jtag_current_state;
} xsvf_t;
#ifdef XSVF_HEAP
// variables will be allocated on heap
uint8_t* xsvf_buf;
xsvf_t* xsvf;
uint8_t* xsvf_tms_transitions;
uint16_t* xsvf_tms_map;
#else /* XSVF_HEAP */
// variables allocated globally
uint8_t xsvf_buf[XSVF_BUF_SIZE];
uint8_t xsvf_tdo_mask[S_MAX_CHAIN_SIZE_BYTES];
uint8_t xsvf_tdi[S_MAX_CHAIN_SIZE_BYTES];
uint8_t xsvf_tdo[S_MAX_CHAIN_SIZE_BYTES];
uint8_t xsvf_tdo_expected[S_MAX_CHAIN_SIZE_BYTES];
uint8_t xsvf_address_mask[S_MAX_CHAIN_SIZE_BYTES];
uint8_t xsvf_data_mask[S_MAX_CHAIN_SIZE_BYTES];
xsvf_t xsvf_context;
xsvf_t* xsvf = &xsvf_context;
static const uint8_t xsvf_tms_transitions[] = {
TMS_T00, TMS_T01, TMS_T02, TMS_T03, TMS_T04, TMS_T05, TMS_T06, TMS_T07,
TMS_T08, TMS_T09, TMS_T10, TMS_T11, TMS_T12, TMS_T13, TMS_T14, TMS_T15,
};
static const uint16_t xsvf_tms_map[] = {
BS00, BS01, BS02, BS03, BS04, BS05, BS06, BS07,
BS08, BS09, BS10, BS11, BS12, BS13, BS14, BS15
};
#endif
typedef struct jtag_port_t {
uint8_t tms;
uint8_t tdi;
uint8_t tdo;
uint8_t tck;
uint8_t vref;
} jtag_port_t;
static void jtag_port_init(jtag_port_t* port) {
pinMode(port->tms, OUTPUT);
pinMode(port->tdi, OUTPUT);
pinMode(port->tck, OUTPUT);
pinMode(port->tdo, INPUT);
pinMode(port->vref, INPUT);
}
static void jtag_port_pulse_clock(jtag_port_t* port) {
digitalWrite(port->tck, 0);
delayMicroseconds(1);
digitalWrite(port->tck, 1);
}
static uint8_t jtag_port_pulse_clock_read_tdo(jtag_port_t* port) {
uint8_t val;
digitalWrite(port->tck, 0);
delayMicroseconds(1);
val = digitalRead(port->tdo);
digitalWrite(port->tck, 1);
return val;
}
static inline void jtag_port_set_tms(jtag_port_t* port, uint8_t val) {
digitalWrite(port->tms, val);
}
static inline void jtag_port_set_tdi(jtag_port_t* port, uint8_t val) {
digitalWrite(port->tdi, val);
}
static inline uint8_t jtag_port_get_veref(jtag_port_t* port) {
return digitalRead(port->vref);
}
static uint8_t xsvf_player_next_byte(void) {
uint8_t retry = 16;
uint8_t pos = xsvf->rdpos % XSVF_BUF_SIZE;
if (xsvf->wrpos == xsvf->rdpos) {
size_t r = 0;
while (r == 0) {
#if XSVF_DEBUG
Serial.println("D<<< req read"); // request to receive BUF size bytes
#endif
Serial.println(F("$062")); // request to receive BUF size bytes
r = Serial.readBytes(xsvf_buf + pos, XSVF_BUF_SIZE - pos);
#if XSVF_DEBUG
Serial.print("D<<< read "); // request to receive BUF size bytes
Serial.println(r, DEC); // request to receive BUF size bytes
#endif
if (r == 0) {
retry --;
if (retry == 0) {
xsvf->error = 1;
return 0;
}
delay(1);
} else {
xsvf->wrpos += r;
}
}
}
xsvf->rdpos++;
#if XSVF_DEBUG
Serial.print(F("D BYTE "));
Serial.print(xsvf_buf[pos], DEC);
Serial.print(F(" 0x"));
Serial.println(xsvf_buf[pos], HEX);
#endif
#if XSVF_CALC_CSUM
xsvf->csum += xsvf_buf[pos];
#endif
return xsvf_buf[pos];
}
static uint8_t xsvf_player_get_next_byte(void) {
return xsvf_player_next_byte();
}
/*
static uint16_t xsvf_player_get_next_word(void) {
uint16_t i = xsvf_player_next_byte();
i <<= 8;
i |= xsvf_player_next_byte();
return i;
}
*/
static uint32_t xsvf_player_get_next_long(void) {
uint32_t i = xsvf_player_next_byte();
i <<= 8;
i |= xsvf_player_next_byte();
i <<= 8;
i |= xsvf_player_next_byte();
i <<= 8;
i |= xsvf_player_next_byte();
return i;
}
static void xsvf_player_get_next_bytes(uint8_t* data, uint32_t count) {
while(count--) {
*data++ = xsvf_player_next_byte();
}
}
#ifdef XSVF_HEAP
static uint32_t xsvf_heap_pos(uint32_t* pos, uint16_t size) {
uint32_t heap_pos = *pos;
//allocate on 4 byte boundaries
heap_pos = (heap_pos + 3) & 0xFFFFFFFC;
*pos = heap_pos + size;
return heap_pos;
}
#endif
static void xsvf_clear() {
uint16_t i;
uint8_t* d = (uint8_t*) xsvf;
//clear the xsvf data in RAM
i = sizeof(xsvf_t);
while(i) {
i--;
d[i] = 0;
}
}
static void xsvf_player_init(jtag_port_t* port) {
jtag_port_init(port);
#ifdef XSVF_HEAP
{
// variables allocated on the heap
uint32_t heap_pos = (uint32_t) XSVF_HEAP;
xsvf = (xsvf_t*) xsvf_heap_pos(&heap_pos, sizeof(xsvf_t));
xsvf_buf = (uint8_t*) xsvf_heap_pos(&heap_pos, XSVF_BUF_SIZE);
xsvf_clear();
xsvf->xsvf_tdo_mask = (uint8_t*) xsvf_heap_pos(&heap_pos, S_MAX_CHAIN_SIZE_BYTES);
xsvf->xsvf_tdi = (uint8_t*) xsvf_heap_pos(&heap_pos, S_MAX_CHAIN_SIZE_BYTES);
xsvf->xsvf_tdo = (uint8_t*) xsvf_heap_pos(&heap_pos, S_MAX_CHAIN_SIZE_BYTES);
xsvf->xsvf_tdo_expected = (uint8_t*) xsvf_heap_pos(&heap_pos, S_MAX_CHAIN_SIZE_BYTES);
xsvf->xsvf_address_mask = (uint8_t*) xsvf_heap_pos(&heap_pos, S_MAX_CHAIN_SIZE_BYTES);
xsvf->xsvf_data_mask = (uint8_t*) xsvf_heap_pos(&heap_pos, S_MAX_CHAIN_SIZE_BYTES);
xsvf_tms_transitions = (uint8_t*) xsvf_heap_pos(&heap_pos, 16);
xsvf_tms_map = (uint16_t*) xsvf_heap_pos(&heap_pos, 32);
if (heap_pos - ((uint32_t)XSVF_HEAP) > sizeof(XSVF_HEAP)) {
Serial.print(F("Q-1,ERROR: Heap is small:"));
Serial.println(heap_pos - ((uint32_t)XSVF_HEAP), DEC);
return;
}
//set up TM transitions
xsvf_tms_transitions[0] = TMS_T00;
xsvf_tms_transitions[1] = TMS_T01;
xsvf_tms_transitions[2] = TMS_T02;
xsvf_tms_transitions[3] = TMS_T03;
xsvf_tms_transitions[4] = TMS_T04;
xsvf_tms_transitions[5] = TMS_T05;
xsvf_tms_transitions[6] = TMS_T06;
xsvf_tms_transitions[7] = TMS_T07;
xsvf_tms_transitions[8] = TMS_T08;
xsvf_tms_transitions[9] = TMS_T09;
xsvf_tms_transitions[10] = TMS_T10;
xsvf_tms_transitions[11] = TMS_T11;
xsvf_tms_transitions[12] = TMS_T12;
xsvf_tms_transitions[13] = TMS_T13;
xsvf_tms_transitions[14] = TMS_T14;
xsvf_tms_transitions[15] = TMS_T15;
//set up bitstream map
xsvf_tms_map[0] = BS00;
xsvf_tms_map[1] = BS01;
xsvf_tms_map[2] = BS02;
xsvf_tms_map[3] = BS03;
xsvf_tms_map[4] = BS04;
xsvf_tms_map[5] = BS05;
xsvf_tms_map[6] = BS06;
xsvf_tms_map[7] = BS07;
xsvf_tms_map[8] = BS08;
xsvf_tms_map[9] = BS09;
xsvf_tms_map[10] = BS10;
xsvf_tms_map[11] = BS11;
xsvf_tms_map[12] = BS12;
xsvf_tms_map[13] = BS13;
xsvf_tms_map[14] = BS14;
xsvf_tms_map[15] = BS15;
}
#else
{
xsvf_clear();
xsvf->xsvf_tdo_mask = xsvf_tdo_mask;
xsvf->xsvf_tdi = xsvf_tdi;
xsvf->xsvf_tdo = xsvf_tdo;
xsvf->xsvf_tdo_expected = xsvf_tdo_expected;
xsvf->xsvf_address_mask = xsvf_address_mask;
xsvf->xsvf_data_mask = xsvf_data_mask;
}
#endif
xsvf->repeat = 32;
xsvf->endir_state = XSTATE_RUN_TEST_IDLE;
xsvf->enddr_state = STATE_RUN_TEST_IDLE;
}
static void xsvf_jtagtap_state_ack(uint8_t tms) {
tms <<= 2; // either 0 or 4
xsvf->jtag_current_state = (xsvf_tms_transitions[xsvf->jtag_current_state] >> tms) & 0xf;
}
static void xsvf_jtagtap_shift_td(
jtag_port_t* port,
uint8_t *input_data,
uint8_t *output_data,
uint32_t data_bits,
uint8_t must_end)
{
uint32_t i, j;
uint32_t bit_count = data_bits;
uint32_t byte_count = (data_bits+ 7) >> 3;
for (i = 0; i < byte_count; ++i) {
uint8_t byte_out = input_data[byte_count - 1 - i];
uint8_t tdo_byte = 0;
for (j = 0; j < 8 && bit_count-- > 0; ++j) {
uint8_t tdo;
if (bit_count == 0 && must_end) {
jtag_port_set_tms(port, 1);
xsvf_jtagtap_state_ack(1);
}
jtag_port_set_tdi(port, byte_out & 1);
byte_out >>= 1;
tdo = jtag_port_pulse_clock_read_tdo(port);
tdo_byte |= tdo << j;
}
output_data[byte_count - 1 - i] = tdo_byte;
}
}
static void xsvf_jtagtap_state_step(jtag_port_t* port, uint8_t tms) {
jtag_port_set_tms(port, tms);
jtag_port_pulse_clock(port);
xsvf_jtagtap_state_ack(tms);
}
static void xsvf_jtagtap_state_goto(jtag_port_t* port, uint8_t state) {
if (xsvf->error) {
return;
}
if (state == XSTATE_TEST_LOGIC_RESET) {
uint8_t i;
for (i = 0; i < 5; ++i) {
xsvf_jtagtap_state_step(port, 1);
}
} else {
while (xsvf->jtag_current_state != state) {
xsvf_jtagtap_state_step(port, (xsvf_tms_map[xsvf->jtag_current_state] >> state) & 1);
}
}
}
static void xsvf_jtagtap_wait_time(jtag_port_t* port, uint32_t microseconds, uint8_t wait_clock) {
uint32_t until;
if (xsvf->error) {
return;
}
until = micros() + microseconds;
if (wait_clock) {
while (microseconds--) {
jtag_port_pulse_clock(port);
}
}
while (micros() < until) {
jtag_port_pulse_clock(port);
}
}
static void xsvf_jtag_sir(jtag_port_t* port) {
if (xsvf->error) {
return;
}
xsvf_jtagtap_state_goto(port, XSTATE_SHIFT_IR);
xsvf_jtagtap_shift_td(port, xsvf->xsvf_tdi, xsvf->xsvf_tdo, xsvf->sirsize_bits, 1);
if (xsvf->runtest) {
xsvf_jtagtap_state_goto(port, xsvf->endir_state);
} else {
xsvf_jtagtap_state_goto(port, XSTATE_RUN_TEST_IDLE);
xsvf_jtagtap_wait_time(port, xsvf->runtest, 1);
}
}
static uint8_t xsvf_jtag_is_tdo_as_expected(uint8_t use_mask)
{
uint32_t i;
for (i = 0; i < xsvf->sdrsize_bytes; ++i) {
uint8_t expected = xsvf->xsvf_tdo_expected[i];
uint8_t actual = xsvf->xsvf_tdo[i];
if (use_mask) {
uint8_t mask = xsvf->xsvf_tdo_mask[i];
expected &= mask;
actual &= mask;
}
#if XSVF_IGNORE_NOMATCH != 1
if (expected != actual) {
#if XSVF_DEBUG
Serial.println(F("D...NO MATCH!"));
#endif
return 0;
}
#endif
}
#if XSVF_DEBUG
Serial.println(F("D...match!"));
#endif
return 1;
}
#define SDR_MUST_BEGIN (flags & 0b1000)
#define SDR_MUST_CHECK (flags & 0b0100)
#define SDR_USE_MASK (flags & 0b0010)
#define SDR_MUST_END (flags & 0b0001)
static uint8_t xsvf_jtag_sdr(jtag_port_t* port, uint8_t flags)
{
int16_t attempts_left = xsvf->repeat;
uint8_t matched = 0;
uint8_t must_end = SDR_MUST_END;
uint8_t must_check = SDR_MUST_CHECK;
uint8_t use_mask = SDR_USE_MASK;
if (xsvf->error) {
return 0;
}
if (SDR_MUST_BEGIN) {
xsvf_jtagtap_state_goto(port, XSTATE_SHIFT_DR);
}
while (!matched && attempts_left-- >= 0) {
xsvf_jtagtap_shift_td(port, xsvf->xsvf_tdi, xsvf->xsvf_tdo, xsvf->sdrsize_bits, must_end);
if (!must_check) {
break;
}
matched = xsvf_jtag_is_tdo_as_expected(use_mask);
if (!matched) {
// XAP058, page 14
xsvf_jtagtap_state_goto(port, XSTATE_PAUSE_DR);
xsvf_jtagtap_state_goto(port, XSTATE_SHIFT_DR);
xsvf_jtagtap_state_goto(port, XSTATE_RUN_TEST_IDLE);
xsvf_jtagtap_wait_time(port, xsvf->runtest, 1);
//
xsvf_jtagtap_state_goto(port, XSTATE_SHIFT_DR);
#if XSVF_DEBUG
if (attempts_left >= 0) {
Serial.print(F("D...repeating: "));
Serial.println(xsvf->repeat - attempts_left, DEC);
}
#endif
}
}
if (must_check && !matched) {
xsvf->error = ERR_DR_CHECK_FAILED;
Serial.println(F("D!DR check failed!"));
}
if (must_end && matched) {
if (!xsvf->runtest) {
xsvf_jtagtap_state_goto(port, xsvf->enddr_state);
} else {
xsvf_jtagtap_state_goto(port, XSTATE_RUN_TEST_IDLE);
xsvf_jtagtap_wait_time(port, xsvf->runtest, 1);
}
}
return !must_check || (must_check && matched);
}
/*
* Reads the next instruction from the serial port. Also reads any
* remaining instruction parameters into the instruction buffer.
*/
static uint8_t xsvf_player_handle_next_instruction(jtag_port_t* port) {
uint8_t instruction = xsvf_player_next_byte();
if (xsvf->error) {
return ERR_IO; // failure
}
xsvf->instruction_counter++;
#if XSVF_DEBUG
Serial.print(F("D INSTR "));
Serial.print(xsvf->instruction_counter, DEC);
Serial.print(F(" (0x"));
Serial.print(instruction, HEX);
Serial.print(F("): "));
#endif
//do not use switch as it uses RAM
// ---[COMPLETE ] --------------------------------------------
if (instruction == XCOMPLETE) {
#if XSVF_DEBUG
Serial.println(F("XCOMPLETE"));
#endif
xsvf->xcomplete = 1;
} else
// ---[TDO MASK] --------------------------------------------
if (instruction == XTDOMASK) {
#if XSVF_DEBUG
Serial.println(F("XTDOMASK"));
#endif
xsvf_player_get_next_bytes(xsvf->xsvf_tdo_mask, xsvf->sdrsize_bytes);
} else
// ---[SIR SIR2] --------------------------------------------
if (instruction == XSIR || instruction == XSIR2) {
#if XSVF_DEBUG
Serial.println(instruction == XSIR ? F("XSIR") : F("XSIR2"));
#endif
xsvf->sirsize_bits = xsvf_player_get_next_byte();
if (instruction == XSIR2) {
xsvf->sirsize_bits <= 8;
xsvf->sirsize_bits |= xsvf_player_get_next_byte();
}
xsvf->sirsize_bytes = (xsvf->sirsize_bits + 7) >> 3;
if (xsvf->sirsize_bytes > S_MAX_CHAIN_SIZE_BYTES) {
return ERR_XSIR_SIZE;
}
xsvf_player_get_next_bytes(xsvf->xsvf_tdi, xsvf->sirsize_bytes);
xsvf_jtag_sir(port);
} else
// ---[SDR ] --------------------------------------------
if (instruction == XSDR || (instruction >= XSDRB && instruction <= XSDRE)) {
uint8_t flags = 0b1111;
#if XSVF_DEBUG
Serial.println(F("XSDRx"));
#endif
xsvf_player_get_next_bytes(xsvf->xsvf_tdi, xsvf->sdrsize_bytes);
if (instruction != XSDR) {
flags = (instruction == XSDRB) ? 0b1000 : (instruction == XSDRC) ? 0b0000 : 0b0001;
}
if (!xsvf_jtag_sdr(port, flags)) {
xsvf->error = ERR_XSDR;
}
} else
// ---[RUN TEST ] --------------------------------------------
if (instruction == XRUNTEST) {
#if XSVF_DEBUG
Serial.println(F("XRUNTEST"));
#endif
xsvf->runtest = xsvf_player_get_next_long();
} else
// ---[REPEAT ] --------------------------------------------
if (instruction == XREPEAT) {
#if XSVF_DEBUG
Serial.println(F("XREPEAT"));
#endif
xsvf->repeat = xsvf_player_get_next_byte();
} else
// ---[SDRSIZE ] --------------------------------------------
if (instruction == XSDRSIZE) {
#if XSVF_DEBUG
Serial.println(F("XSDRSIZE"));
#endif
xsvf->sdrsize_bits = xsvf_player_get_next_long();
xsvf->sdrsize_bytes = (xsvf->sdrsize_bits + 7) >> 3;
if (xsvf->sdrsize_bytes > S_MAX_CHAIN_SIZE_BYTES) {
return ERR_XSDRSIZE;
}
} else
// ---[SDRTDO ] --------------------------------------------
if (instruction == XSDRTDO || (instruction >= XSDRTDOB && instruction <= XSDRTDOE)) {
uint8_t flags = 0b1111;
#if XSVF_DEBUG
Serial.println(F("XSDRTDOx"));
#endif
xsvf_player_get_next_bytes(xsvf->xsvf_tdi, xsvf->sdrsize_bytes);
xsvf_player_get_next_bytes(xsvf->xsvf_tdo_expected, xsvf->sdrsize_bytes);
if (instruction != XSDRTDO) {
flags = (instruction == XSDRTDOB) ? 0b1100 : (instruction == XSDRTDOC) ? 0b0100 : 0b0101;
}
if (!xsvf_jtag_sdr(port, flags)) {
xsvf->error = ERR_XSDR;
}
} else
// ---[SET SDR MASKS ] --------------------------------------------
if (instruction == XSETSDRMASKS) {
#if XSVF_DEBUG
Serial.println(F("XSETSDRMASKS"));
#endif
xsvf_player_get_next_bytes(xsvf->xsvf_address_mask, xsvf->sdrsize_bytes);
xsvf_player_get_next_bytes(xsvf->xsvf_data_mask, xsvf->sdrsize_bytes);
} else
// ---[SDR INC ] --------------------------------------------
if (instruction == XSDRINC) {
#if XSVF_DEBUG
Serial.println(F("XSDRINC"));
#endif
xsvf_player_get_next_bytes(xsvf->xsvf_tdi, xsvf->sdrsize_bytes);
// TODO - check: return false?
} else
// ---[STATE ] --------------------------------------------
if (instruction == XSTATE) {
#if XSVF_DEBUG
Serial.println(F("XSTATE"));
#endif
xsvf->next_state = xsvf_player_get_next_byte();
xsvf_jtagtap_state_goto(port, xsvf->next_state);
} else
// ---[END IR ] --------------------------------------------
if (instruction == XENDIR) {
uint8_t s;
#if XSVF_DEBUG
Serial.println(F("XENDIR"));
#endif
s = xsvf_player_get_next_byte();
if (s == 0) {
xsvf->endir_state = STATE_RUN_TEST_IDLE;
} else
if (s == 1) {
xsvf->endir_state = STATE_PAUSE_IR;
} else {
return ERR_XENDIR;
}
} else
// ---[END DR ] --------------------------------------------
if (instruction == XENDDR) {
uint8_t s;
#if XSVF_DEBUG
Serial.println(F("XENDDR"));
#endif
s = xsvf_player_get_next_byte();
if (s == 0) {
xsvf->enddr_state = STATE_RUN_TEST_IDLE;
} else
if (s == 1) {
xsvf->enddr_state = STATE_PAUSE_DR;
} else {
return ERR_XENDDR;
}
} else
// ---[COMMENT ] --------------------------------------------
if (instruction == XCOMMENT) {
uint8_t c;
#if XSVF_DEBUG
Serial.println(F("XCOMMENT"));
#endif
Serial.print(F("D"));//debug message preamble
//read the comment bytes
do {
c = xsvf_player_get_next_byte();
// special feature: dump the TDO data
if (c == '#') {
uint8_t cnt = 0;
uint8_t size = xsvf_player_get_next_byte() - '0';
//dump the tdo buffer bytes
while(cnt < size) {
char t[4];
uint8_t v = xsvf->xsvf_tdo[cnt];
uint8_t x1 = v >> 4;
v &= 0xF;
// DEC to HEX conversion with leading zero
t[0] = (char) (x1 < 10 ? '0' + x1 : 55 + x1 );
t[1] = (char) (v < 10 ? '0' + v : 55 + v );
t[2] = 0;
Serial.print(t);
cnt++;
}
} else if (c) {
Serial.print((char)c);
}
} while(c);
Serial.println();
} else
// ---[WAIT ] --------------------------------------------
if (instruction == XWAIT || instruction == XWAITSTATE) {
uint32_t clock_cnt = 0;
uint8_t wait_clock = 1;
#if XSVF_DEBUG
Serial.println(instruction == XWAIT ? F("XWAIT") : F("XWAITSTATE"));
#endif
//TOOD - do we need these states to be global?
xsvf->wait_start_state = xsvf_player_get_next_byte();
xsvf->wait_end_state = xsvf_player_get_next_byte();
if (instruction == XWAITSTATE) {
clock_cnt = xsvf_player_get_next_long();
wait_clock = clock_cnt > 0 ? 1 : 0;
}
#if XSVF_DEBUG
Serial.print(F("Dclock:"));
Serial.println(clock_cnt, DEC);
#endif
xsvf->wait_time_usecs = xsvf_player_get_next_long();
#if XSVF_DEBUG
Serial.print(F("Dmicros:"));
Serial.println( xsvf->wait_time_usecs, DEC);
#endif
xsvf_jtagtap_state_goto(port, xsvf->wait_start_state);
// happens only during XWAITSTATE
while (clock_cnt) {
jtag_port_pulse_clock(port);
clock_cnt--;
}
xsvf_jtagtap_wait_time(port, xsvf->wait_time_usecs, wait_clock);
xsvf_jtagtap_state_goto(port, xsvf->wait_end_state);
} else
// ---[TRST - test line reset] --------------------------------------------
if (instruction == XTRST) {
#if XSVF_DEBUG
Serial.println(F("XTRST"));
#endif
//read test reset mode (0-on, 1-off, 2-Z, 3-Absent)
xsvf_player_get_next_byte();
} else
// ---[UNKNOWN ] --------------------------------------------
{
#if XSVF_DEBUG
Serial.print(F("XUNKNOWN:"));
Serial.println(instruction, DEC);
#endif
//unimplemented instruction
return ERR_INSTR_NOT_IMPLEMENTED;
}
if (xsvf->error) {
return xsvf->error; // failure
}
return 0;
}
static void jtag_play_xsvf(jtag_port_t* port)
{
uint32_t n = 0;
uint8_t ret;
xsvf_player_init(port);
//check xref is high
if (!jtag_port_get_veref(port)) {
Serial.println(F("Q-255,JTAG not connected"));
return;
}
Serial.println(F("RXSVF")); //announce ready to receive XSVF stream
while(1) {
n++;
ret = xsvf_player_handle_next_instruction(port);
if (ret) {
Serial.print(F("Q-"));
Serial.print(ret, DEC );
Serial.println(F(",Fail"));
break;
} else {
if (xsvf->xcomplete) {
Serial.println(F("!Success"));
break;
}
}
}
Serial.print(F("!Processed instr:"));
Serial.println(xsvf->instruction_counter, DEC);
#if XSVF_CALC_CSUM
Serial.print(F("!sum: 0x"));
// print leading zeros in the check sum hex value
{
uint32_t i = 0xF0000000;
while((!(xsvf->csum & i)) && i) {
Serial.print(F("0"));
i >>= 4;
}
}
Serial.print(xsvf->csum, HEX);
Serial.print(F("/"));
Serial.println(xsvf->rdpos, DEC);
#endif /* XSVF_CALC_CSUM */
if (xsvf->xcomplete) {
Serial.println(F("Q-0,OK"));
}
//the 3 pins must be low or else the vref might be triggered next time
digitalWrite(port->tms, 0);
digitalWrite(port->tdi, 0);
digitalWrite(port->tck, 0);
delay(100);
// put the jtag port pins into High-Z (vref already is input)
pinMode(port->tms, INPUT);
pinMode(port->tdi, INPUT);
pinMode(port->tck, INPUT);
pinMode(port->tdo, INPUT);
}
#endif /*_JTAG_XSVF_PLAYER_H_*/