-
Notifications
You must be signed in to change notification settings - Fork 35
/
gqn_provider.py
280 lines (252 loc) · 9.69 KB
/
gqn_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""
Input pipeline (tf.dataset and input_fn) for GQN datasets.
Adapted from the implementation provided here:
https://github.com/deepmind/gqn-datasets/blob/acca9db6d9aa7cfa4c41ded45ccb96fecc9b272e/data_reader.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import tensorflow as tf
# ---------- ad-hoc data structures ----------
DatasetInfo = collections.namedtuple(
'DatasetInfo',
['basepath', 'train_size', 'test_size', 'frame_size', 'sequence_size']
)
Context = collections.namedtuple('Context', ['frames', 'cameras'])
Query = collections.namedtuple('Query', ['context', 'query_camera'])
TaskData = collections.namedtuple('TaskData', ['query', 'target'])
# ---------- dataset constants ----------
_DATASETS = dict(
jaco=DatasetInfo(
basepath='jaco',
train_size=3600,
test_size=400,
frame_size=64,
sequence_size=11),
mazes=DatasetInfo(
basepath='mazes',
train_size=1080,
test_size=120,
frame_size=84,
sequence_size=300),
rooms_free_camera_with_object_rotations=DatasetInfo(
basepath='rooms_free_camera_with_object_rotations',
train_size=2034,
test_size=226,
frame_size=128,
sequence_size=10),
rooms_ring_camera=DatasetInfo(
basepath='rooms_ring_camera',
train_size=2160,
test_size=240,
frame_size=64,
sequence_size=10),
# super-small subset of rooms_ring for debugging purposes
rooms_ring_camera_debug=DatasetInfo(
basepath='rooms_ring_camera_debug',
train_size=1,
test_size=1,
frame_size=64,
sequence_size=10),
rooms_free_camera_no_object_rotations=DatasetInfo(
basepath='rooms_free_camera_no_object_rotations',
train_size=2160,
test_size=240,
frame_size=64,
sequence_size=10),
shepard_metzler_5_parts=DatasetInfo(
basepath='shepard_metzler_5_parts',
train_size=900,
test_size=100,
frame_size=64,
sequence_size=15),
shepard_metzler_7_parts=DatasetInfo(
basepath='shepard_metzler_7_parts',
train_size=900,
test_size=100,
frame_size=64,
sequence_size=15)
)
_NUM_CHANNELS = 3
_NUM_RAW_CAMERA_PARAMS = 5
_MODES = ('train', 'test')
# ---------- helper functions ----------
def _convert_frame_data(jpeg_data):
decoded_frames = tf.image.decode_jpeg(jpeg_data)
return tf.image.convert_image_dtype(decoded_frames, dtype=tf.float32)
def _get_dataset_files(dataset_info, mode, root):
"""Generates lists of files for a given dataset version."""
basepath = dataset_info.basepath
base = os.path.join(root, basepath, mode)
if mode == 'train':
num_files = dataset_info.train_size
else:
num_files = dataset_info.test_size
length = len(str(num_files))
template = '{:0%d}-of-{:0%d}.tfrecord' % (length, length)
record_paths = [ # indexing runs from 1 to n
os.path.join(base, template.format(i, num_files))
for i in range(1, num_files + 1)]
return record_paths
def _get_randomized_indices(context_size, dataset_info, seed):
"""Generates randomized indices into a sequence of a specific length."""
example_size = context_size + 1
indices = tf.range(0, dataset_info.sequence_size)
indices = tf.random_shuffle(indices, seed=seed)
indices = tf.slice(indices, begin=[0], size=[example_size])
return indices
def _parse(raw_data, dataset_info):
"""Parses raw data from the tfrecord."""
feature_map = {
'frames': tf.FixedLenFeature(
shape=dataset_info.sequence_size, dtype=tf.string),
'cameras': tf.FixedLenFeature(
shape=[dataset_info.sequence_size * _NUM_RAW_CAMERA_PARAMS],
dtype=tf.float32)
}
# example = tf.parse_example(raw_data, feature_map)
example = tf.parse_single_example(raw_data, feature_map)
return example
def _preprocess(example, indices, context_size, custom_frame_size, dataset_info):
"""Preprocesses the parsed data."""
# frames
example_size = context_size + 1
frames = tf.concat(example['frames'], axis=0)
frames = tf.gather(frames, indices, axis=0)
frames = tf.map_fn(
_convert_frame_data, tf.reshape(frames, [-1]),
dtype=tf.float32, back_prop=False)
dataset_image_dimensions = tuple(
[dataset_info.frame_size] * 2 + [_NUM_CHANNELS])
frames = tf.reshape(
frames, (example_size, ) + dataset_image_dimensions)
if (custom_frame_size and
custom_frame_size != dataset_info.frame_size):
frames = tf.reshape(frames, dataset_image_dimensions)
new_frame_dimensions = (custom_frame_size,) * 2 + (_NUM_CHANNELS,)
frames = tf.image.resize_bilinear(
frames, new_frame_dimensions[:2], align_corners=True)
frames = tf.reshape(
frames, (-1, example_size) + new_frame_dimensions)
# cameras
raw_pose_params = example['cameras']
raw_pose_params = tf.reshape(
raw_pose_params,
[dataset_info.sequence_size, _NUM_RAW_CAMERA_PARAMS])
raw_pose_params = tf.gather(raw_pose_params, indices, axis=0)
pos = raw_pose_params[:, 0:3]
yaw = raw_pose_params[:, 3:4]
pitch = raw_pose_params[:, 4:5]
cameras = tf.concat(
[pos, tf.sin(yaw), tf.cos(yaw), tf.sin(pitch), tf.cos(pitch)], axis=-1)
# return preprocessed tuple
preprocessed_example = {}
preprocessed_example['frames'] = frames
preprocessed_example['cameras'] = cameras
return preprocessed_example
def _prepare(preprocessed_example):
"""Prepares the preprocessed data into (feature, label) tuples."""
# decompose
frames = preprocessed_example['frames']
cameras = preprocessed_example['cameras']
# split data
context_frames = frames[:-1]
context_cameras = cameras[:-1]
target = frames[-1]
query_camera = cameras[-1]
context = Context(cameras=context_cameras, frames=context_frames)
query = Query(context=context, query_camera=query_camera)
data = TaskData(query=query, target=target)
return data, data.target
# ---------- input_fn ----------
def gqn_input_fn(
dataset_name,
root,
mode,
context_size,
batch_size=1,
num_epochs=1,
# optionally reshape frames
custom_frame_size=None,
# queue params
num_threads=4,
buffer_size=256,
seed=None):
"""
Creates a tf.data.Dataset based op that returns data.
Args:
dataset_name: string, one of ['jaco', 'mazes', 'rooms_ring_camera',
'rooms_free_camera_no_object_rotations',
'rooms_free_camera_with_object_rotations', 'shepard_metzler_5_parts',
'shepard_metzler_7_parts'].
root: string, path to the root folder of the data.
mode: one of tf.estimator.ModeKeys.
context_size: integer, number of views to be used to assemble the context.
batch_size: (optional) batch size, defaults to 1.
num_epochs: (optional) number of times to go through the dataset,
defaults to 1.
custom_frame_size: (optional) integer, required size of the returned
frames, defaults to None.
num_threads: (optional) integer, number of threads used to read and parse
the record files, defaults to 4.
buffer_size: (optional) integer, capacity of the underlying prefetch or
shuffle buffer, defaults to 256.
seed: (optional) integer, seed for the random number generators used in
the dataset.
Returns:
tf.data.dataset yielding tuples of the form (features, labels)
shapes:
features.query.context.cameras: [N, K, 7]
features.query.context.frames: [N, K, H, W, 3]
features.query.query_camera: [N, 7]
features.target (same as labels): [N, H, W, 3]
Raises:
ValueError: if the required version does not exist; if the required mode
is not supported; if the requested context_size is bigger than the
maximum supported for the given dataset version.
"""
# map estimator mode key to dataset internal mode strings
if mode == tf.estimator.ModeKeys.TRAIN:
str_mode = 'train'
else:
str_mode = 'test'
# check validity of requested dataset and split
if dataset_name not in _DATASETS:
raise ValueError('Unrecognized dataset {} requested. Available datasets '
'are {}'.format(dataset_name, _DATASETS.keys()))
if str_mode not in _MODES:
raise ValueError('Unsupported mode {} requested. Supported modes '
'are {}'.format(str_mode, _MODES))
# retrieve dataset parameters
dataset_info = _DATASETS[dataset_name]
if context_size >= dataset_info.sequence_size:
raise ValueError(
'Maximum support context size for dataset {} is {}, but '
'was {}.'.format(
dataset_name, dataset_info.sequence_size-1, context_size))
# collect the paths to all tfrecord files
record_paths = _get_dataset_files(dataset_info, str_mode, root)
# create TFRecordDataset
dataset = tf.data.TFRecordDataset(
filenames=record_paths, num_parallel_reads=num_threads)
# parse the data from tfrecords
dataset = dataset.map(
lambda raw_data: _parse(raw_data, dataset_info),
num_parallel_calls=num_threads)
# preprocess into context and target
indices = _get_randomized_indices(context_size, dataset_info, seed)
dataset = dataset.map(
lambda example: _preprocess(example, indices, context_size, custom_frame_size, dataset_info),
num_parallel_calls=num_threads)
# parse into tuple expected by tf.estimator input_fn
dataset = dataset.map(_prepare, num_parallel_calls=num_threads)
# shuffle data
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.shuffle(buffer_size=(buffer_size * batch_size), seed=seed)
# set up batching
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(buffer_size)
return dataset