-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Choosing between the two LES definitions of sub-grid fluxes #51
Comments
I will go ahead and compute the |
Looking good. For completeness also add smoothed (Q*) to above plot. |
Before I do that I actually took a quick look at the spatial comparison between the methods:
We can see the same negative features in both methods ✅ but the filtering has some prominent positive anomalies that do not appear in the coarsened output. Some of these I interpret as small scale noise (e.g. the smaller patches in the SO), but the effect of the coasts and the equator seems to persist. I do not think this is a blocker, I am just wondering how to interpret these. Are these effects of very strong local gradients which influence the filtering differently than the coarsening? The differences show this large scale alternating patterns, which seems to mostly average out in the global average, but is not negligible locally! Thoughts on how to deal with this?
|
This also made me notice that my coarsening does not treat the coordinates properly. It replaces the values of e.g. EDIT: Here is a partially fixed version for better visual comparison. #56 will be applied to all data in the next full processing round. |
Here is a longer version of the timeseries above: This clearly shows that interannual variability is minor (and I agree with @rabernat now that we should not show this full timeseries). But I would argue that the seasonal variability is significant? How do folks feel about changing the 20 yr timeseries to a seasonal climatology? |
👍 |
This to catch up @rpa, @paigem and @TomNicholas, on the hole that @jbusecke and I are just emerging out of (I think successfully). I apologize that this is very long issue, and some of the details might not be fully present here and can be discussed in a zoom call.
Context: This issue arose out of the discussions based on #50, where we were looking for a clean way to decompose the sub-grid flux contributions ($Q^{*} = \overline{Q_H} - Q_L$ , where $\overline{Q_H}$ is the smoothed flux computed from high resolution fields and $Q_L$ is the flux computed from the low-resolution fields.) that come from the atmosphere vs the ocean.
What we tried and the problem with it: We tried to establish the contributions from just one component's small scale. E.g. for establishing the contributions from oceanic small scale, we computed the flux using all the full-resolution fields and remove the flux that was computed using the full-resolution atmosphere and smoothed ocean ($Q^C_{Ocean}$ = $\overline{Q_H} - \overline{Q_{LOcean}}$ $\overline{Q_{LOcean}}$ has been smoothed since it would have explicit small scale structure from atmosphere). The opposite was done to establish contributions due to atmosphere $Q^C_{Atmosphere}$ . The problem that we came up against was that the $Q^* = Q^C_{Ocean} + Q^C_{Atmosphere} + Q^*_{Residual}$ , where the residual term was very large and comparable to the other terms (also it was not completely obvious what this contribution was. [I apologize for the funky notation switching between * and C (should have been ** ), but that is because github has terrible math rendering.]
, where
Solution: In the process of trying to figure out what was going on, we discovered that there are two complementary and equivalent ways to define the sub-grid contributions. The first is the definition we were using -$Q^{*} = \overline{Q_H} - Q_L$ , and the second is $Q^{**} = \overline{Q_H} - \overline{Q_L}$ (Sagaut 2006: LES book). The difference between the two is whether $Q_L$ is smoothed or not. They also have slightly different-looking evolution equations (even though both evolve smoothed $T$ in exactly the same way):
$$There are a number of advantages to the second formulation:
Decompositon:
For an AB type non-linearity we have:
$$
Q^* = \overline{A.B} - \overline{A} .\overline{B}
$$
This can be further decomposed using$A = \overline{A} + A'$ as
$$
Q^* = [\overline{ \overline{A}.\overline{B}} - \overline{A} .\overline{B}] + [\overline{A'.\overline{B}} + \overline{\overline{A}.B'}] + \overline{A'.B'}
$$
where the bracketed terms are called the Leonard stress, cross-stress, and Reynold's stress respectively.
But also note that the above expression can be written as
as
The difference between$Q^*$ and $Q**$ is the Leonard term, which is purely a result of large-scale fields - it is the small-scale structure that results when two large-scale fields interact in a non-linear way.
On the other hand there is a nice decomposition for
$$
Q^{**} = [\overline{A'.\overline{B}} + \overline{\overline{A}.B'}] + \overline{A'.B'}
$$
which has contributions from (1) how the small scale A interacts with large scale B, (2) how large scale A interacts with small scale B and (3) how the small scale A interacts with small scale B. We can interpret A and B as the ocean and atmopshere parts, so contribution (3) seems to the focus of most of the air-sea interaction literature, which is focussed on analyzing how wind anomalies form over mesoscales SST anomalies.
An extended set of notes on this topic (as our thinking evolved) can be found here
The text was updated successfully, but these errors were encountered: