-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
45 lines (34 loc) · 1.21 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from fastai.vision.all import *
from io import BytesIO
import requests
import streamlit as st
"""
# HeartNet
This is a classifier for images of 12-lead EKGs. It will attempt to detect whether the EKG indicates an acute MI. It was trained on simulated images.
"""
def predict(img):
st.image(img, caption="Your image", use_column_width=True)
pred, _, probs = learn_inf.predict(img)
# st.write(learn_inf.predict(img))
f"""
## This **{'is ' if pred == 'mi' else 'is not'}** an MI (heart attack).
### Probability of MI: {probs[0].item()*100: .2f}%
### Probability Normal: {probs[1].item()*100: .2f}%
"""
path = "./"
learn_inf = load_learner(path + "demo_model.pkl")
option = st.radio("", ["Upload Image", "Image URL"])
if option == "Upload Image":
uploaded_file = st.file_uploader("Please upload an image.")
if uploaded_file is not None:
img = PILImage.create(uploaded_file)
predict(img)
else:
url = st.text_input("Please input a url.")
if url != "":
try:
response = requests.get(url)
pil_img = PILImage.create(BytesIO(response.content))
predict(pil_img)
except:
st.text("Problem reading image from", url)