forked from weidafeng/TableCell
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfindCounter.py
158 lines (140 loc) · 5.14 KB
/
findCounter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -*-#
#-------------------------------------------------------------------------------
# Name: findCounter.py
# Author: wdf
# Date: 2019/7/17
# IDE: PyCharm
# Parameters:
# @param:
# @param:
# Return:
#
# Description:
# Usage:
#-------------------------------------------------------------------------------
import cv2
import numpy as np
def split_rec(arr):
"""
切分单元格
:param arr:
:return:
"""
# 数组进行排序
print(arr)
print("*"*50)
arr.sort(key=lambda x: x[0],reverse=True)
# 数组反转
arr.reverse()
for i in range(len(arr) - 1):
if arr[i+1][0] == arr[i][0]:
arr[i+1][3] = arr[i][1]
arr[i + 1][2] = arr[i][2]
if arr[i+1][0] > arr[i][0]:
arr[i + 1][2] = arr[i][0]
print(arr[i])
return arr
def get_points(img_transverse, img_vertical):
"""
获取横纵线的交点
:param img_transverse:
:param img_vertical:
:return:
"""
img = cv2.bitwise_and(img_transverse, img_vertical)
return img
def get_vertical_line(binary):
rows, cols = binary.shape
scale = 20 # 这个值越大,检测到的直线越多
# 识别竖线
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, rows // scale))
# 竖直方向上线条获取的步骤同上,唯一的区别在于腐蚀膨胀的区域为一个宽为1,高为缩放后的图片高度的一个竖长形直条
eroded = cv2.erode(binary, kernel, iterations=1)
dilatedrow = cv2.dilate(eroded, kernel, iterations=2)
# cv2.imshow("Dilated row", dilatedrow)
return dilatedrow
def get_transverse_line(binary):
rows, cols = binary.shape
scale = 20 # 这个值越大,检测到的直线越多
# 识别横线
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (cols // scale, 1))
# getStructuringElement: Returns a structuring element of the specified size and shape for morphological operations.
# (cols // scale, 1) 为了获取横向的表格线,设置腐蚀和膨胀的操作区域为一个比较大的横向直条
eroded = cv2.erode(binary, kernel, iterations=1)
# cv2.imshow("Eroded Image",eroded)
dilatedcol = cv2.dilate(eroded, kernel, iterations=2)
# cv2.imshow("Dilated col", dilatedcol)
return dilatedcol
def bin_img(image):
"""
对图像进行二值化处理
:param img: 传入的图像对象(numpy.ndarray类型)
:return: 二值化后的图像
"""
# 二值化
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
binary = cv2.adaptiveThreshold(~gray, 255, # ~取反,很重要,使二值化后的图片是黑底白字
cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, -10)
return binary
def get_rec(img):
"""
获取单元格
:param img:
:return:
"""
contours, hierarchy = cv2.findContours(img, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
contours_poly = [0] * len(contours)
boundRect = [0] * len(contours)
rois = []
print("*"*50)
print("contours: \n")
for i in range(len(contours) - 1):
cnt = contours[i]
print(i,cnt)
contours_poly[i] = cv2.approxPolyDP(curve=cnt, epsilon=1, closed=True)
# 以指定的精度近似多边形曲线。
'''
. @param curve Input vector of a 2D point stored in std::vector or Mat
. @param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
. between the original curve and its approximation.
. @param closed If true, the approximated curve is closed (its first and last vertices are
. connected). Otherwise, it is not closed.'''
boundRect[i] = cv2.boundingRect(contours_poly[i])
rois.append(np.array(boundRect[i]))
pt1 = (boundRect[i][0], boundRect[i][1]),
pt2 = (boundRect[i][2], boundRect[i][3]),
print(img.shape)
print("pt1:",pt1)
print("pt2:",pt2)
img = cv2.rectangle(img_bak,
pt1=(boundRect[i][0], boundRect[i][1]),
pt2=(boundRect[i][2], boundRect[i][3]),
color=(0, 0, 255),
thickness=2,
lineType=1,
shift=0)
cv2.imshow("contour",img)
rois = split_rec(rois)
return rois
if __name__ == "__main__":
image = "./img/table-6.png"
image1 = "./img/9.jpg"
img_bak = cv2.imread(image)
img = bin_img(img_bak)
# img_transverse = erode_img(img,(1,2),40)
# img_vertical = erode_img(img, (2,1), 40)
# # img = img_transverse + img_vertical
# img_transverse = dilate_img(img_transverse,(2,2),1)
# img_vertical = dilate_img(img_vertical,(2,2),1)
#
# img = get_points(img_transverse,img_vertical)
dilatedcol, dilatedrow = get_vertical_line(img), get_transverse_line(img)
img = get_points(dilatedcol, dilatedrow)
rois = get_rec(img)
print("*"*50)
print(rois)
for i, r in enumerate(rois):
cv2.imshow(str(i), img_bak[r[3]:r[1], r[2]:r[0]])
cv2.waitKey(0)
cv2.destroyAllWindows()
pass