-
Notifications
You must be signed in to change notification settings - Fork 7
/
workflow.py
907 lines (790 loc) · 40.9 KB
/
workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
import json
import urllib.request
import urllib.parse
import torch
import logging
import time
import uuid
import traceback
import nodes
import copy
import asyncio
from enum import Enum
import numpy as np
import server
import hashlib
from torchvision import transforms
from .utils.logger import Logger
from .utils.utils import caches
from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
import comfy.model_management
import sys
from PIL import Image
from comfy_execution.graph_utils import is_link, GraphBuilder
from nodes import SaveImage
import gc
class ExecutionResult(Enum):
SUCCESS = 0
FAILURE = 1
PENDING = 2
class AnyType(str):
"""A special class that is always equal in not equal comparisons. Credit to pythongosssss"""
def __eq__(self, _) -> bool:
return True
def __ne__(self, __value: object) -> bool:
return False
client_id = '5b49a023-b05a-4c53-8dc9-addc3a749911'
server_address = "127.0.0.1:8188"
def _map_node_over_list(obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None):
# check if node wants the lists
input_is_list = getattr(obj, "INPUT_IS_LIST", False)
if len(input_data_all) == 0:
max_len_input = 0
else:
max_len_input = max(len(x) for x in input_data_all.values())
# get a slice of inputs, repeat last input when list isn't long enough
def slice_dict(d, i):
return {k: v[i if len(v) > i else -1] for k, v in d.items()}
results = []
def process_inputs(inputs, index=None):
if allow_interrupt:
nodes.before_node_execution()
execution_block = None
for k, v in inputs.items():
if isinstance(v, ExecutionBlocker):
execution_block = execution_block_cb(v) if execution_block_cb else v
break
if execution_block is None:
if pre_execute_cb is not None and index is not None:
pre_execute_cb(index)
results.append(getattr(obj, func)(**inputs))
else:
results.append(execution_block)
if input_is_list:
process_inputs(input_data_all, 0)
elif max_len_input == 0:
process_inputs({})
else:
for i in range(max_len_input):
input_dict = slice_dict(input_data_all, i)
process_inputs(input_dict, i)
return results
def merge_result_data(results, obj):
# check which outputs need concatenating
output = []
output_is_list = [False] * len(results[0])
if hasattr(obj, "OUTPUT_IS_LIST"):
output_is_list = obj.OUTPUT_IS_LIST
# merge node execution results
for i, is_list in zip(range(len(results[0])), output_is_list):
if is_list:
output.append([x for o in results for x in o[i]])
else:
output.append([o[i] for o in results])
return output
def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb=None):
results = []
uis = []
subgraph_results = []
return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True,
execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
has_subgraph = False
for i in range(len(return_values)):
r = return_values[i]
if isinstance(r, dict):
if 'ui' in r:
uis.append(r['ui'])
if 'expand' in r:
# Perform an expansion, but do not append results
has_subgraph = True
new_graph = r['expand']
result = r.get("result", None)
if isinstance(result, ExecutionBlocker):
result = tuple([result] * len(obj.RETURN_TYPES))
subgraph_results.append((new_graph, result))
elif 'result' in r:
result = r.get("result", None)
if isinstance(result, ExecutionBlocker):
result = tuple([result] * len(obj.RETURN_TYPES))
results.append(result)
subgraph_results.append((None, result))
else:
if isinstance(r, ExecutionBlocker):
r = tuple([r] * len(obj.RETURN_TYPES))
results.append(r)
subgraph_results.append((None, r))
if has_subgraph:
output = subgraph_results
elif len(results) > 0:
output = merge_result_data(results, obj)
else:
output = []
ui = dict()
if len(uis) > 0:
# ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
for k in uis[0].keys():
for x in uis:
ui[k] = x[k]
# ui = {k: uis[0]["images"] for k in uis[0].keys()}
return output, ui, has_subgraph
def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, extra_data=None):
if extra_data is None:
extra_data = {}
valid_inputs = class_def.INPUT_TYPES()
input_data_all = {}
missing_keys = {}
for x in inputs:
input_data = inputs[x]
input_type, input_category, input_info = get_input_info(class_def, x)
def mark_missing():
missing_keys[x] = True
input_data_all[x] = (None,)
if is_link(input_data) and (not input_info or not input_info.get("rawLink", False)):
input_unique_id = input_data[0]
output_index = input_data[1]
if outputs is None:
mark_missing()
continue # This might be a lazily-evaluated input
cached_output = outputs.get(input_unique_id)
if cached_output is None:
mark_missing()
continue
if output_index >= len(cached_output):
mark_missing()
continue
obj = cached_output[output_index]
input_data_all[x] = obj
elif input_category is not None:
input_data_all[x] = [input_data]
if "hidden" in valid_inputs:
h = valid_inputs["hidden"]
for x in h:
if h[x] == "PROMPT":
input_data_all[x] = [dynprompt.get_original_prompt() if dynprompt is not None else {}]
if h[x] == "DYNPROMPT":
input_data_all[x] = [dynprompt]
if h[x] == "EXTRA_PNGINFO":
input_data_all[x] = [extra_data.get('extra_pnginfo', None)]
if h[x] == "UNIQUE_ID":
input_data_all[x] = [unique_id]
return input_data_all, missing_keys
def full_type_name(klass):
module = klass.__module__
if module == 'builtins':
return klass.__qualname__
return module + '.' + klass.__qualname__
def format_value(x):
if x is None:
return None
elif isinstance(x, (int, float, bool, str)):
return x
else:
return str(x)
def executes(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list,
pending_subgraph_results):
unique_id = current_item
real_node_id = dynprompt.get_real_node_id(unique_id)
display_node_id = dynprompt.get_display_node_id(unique_id)
parent_node_id = dynprompt.get_parent_node_id(unique_id)
inputs = dynprompt.get_node(unique_id)['inputs']
class_type = dynprompt.get_node(unique_id)['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if caches.outputs.get(unique_id) is not None:
if server.client_id is not None:
cached_output = caches.ui.get(unique_id) or {}
server.send_sync("executed", {"node": unique_id, "display_node": display_node_id,
"output": cached_output.get("output", None), "prompt_id": prompt_id},
server.client_id)
return (ExecutionResult.SUCCESS, None, None)
input_data_all = None
try:
if unique_id in pending_subgraph_results:
cached_results = pending_subgraph_results[unique_id]
resolved_outputs = []
for is_subgraph, result in cached_results:
if not is_subgraph:
resolved_outputs.append(result)
else:
resolved_output = []
for r in result:
if is_link(r):
source_node, source_output = r[0], r[1]
node_output = caches.outputs.get(source_node)[source_output]
for o in node_output:
resolved_output.append(o)
else:
resolved_output.append(r)
resolved_outputs.append(tuple(resolved_output))
output_data = merge_result_data(resolved_outputs, class_def)
output_ui = []
has_subgraph = False
else:
input_data_all, missing_keys = get_input_data(inputs, class_def, unique_id, caches.outputs, dynprompt,
extra_data)
if server.client_id is not None:
server.last_node_id = display_node_id
server.send_sync("executing",
{"node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id},
server.client_id)
obj = caches.objects.get(unique_id)
if obj is None:
obj = class_def()
caches.objects.set(unique_id, obj)
if hasattr(obj, "check_lazy_status"):
required_inputs = _map_node_over_list(obj, input_data_all, "check_lazy_status", allow_interrupt=True)
required_inputs = set(sum([r for r in required_inputs if isinstance(r, list)], []))
required_inputs = [x for x in required_inputs if isinstance(x, str) and (
x not in input_data_all or x in missing_keys
)]
if len(required_inputs) > 0:
for i in required_inputs:
execution_list.make_input_strong_link(unique_id, i)
return (ExecutionResult.PENDING, None, None)
def execution_block_cb(block):
if block.message is not None:
"""mes = {
"prompt_id": prompt_id,
"node_id": unique_id,
"node_type": class_type,
"executed": list(executed),
"exception_message": f"Execution Blocked: {block.message}",
"exception_type": "ExecutionBlocked",
"traceback": [],
"current_inputs": [],
"current_outputs": [],
}"""
"""server.send_sync("execution_error", mes, server.client_id)"""
return ExecutionBlocker(None)
else:
return block
def pre_execute_cb(call_index):
GraphBuilder.set_default_prefix(unique_id, call_index, 0)
output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all,
execution_block_cb=execution_block_cb,
pre_execute_cb=pre_execute_cb)
if len(output_ui) > 0:
caches.ui.set(unique_id, {
"meta": {
"node_id": unique_id,
"display_node": display_node_id,
"parent_node": parent_node_id,
"real_node_id": real_node_id,
},
"output": output_ui
})
if server.client_id is not None:
server.send_sync("executed", {"node": unique_id, "display_node": display_node_id, "output": output_ui,
"prompt_id": prompt_id}, server.client_id)
if has_subgraph:
cached_outputs = []
new_node_ids = []
new_output_ids = []
new_output_links = []
for i in range(len(output_data)):
new_graph, node_outputs = output_data[i]
if new_graph is None:
cached_outputs.append((False, node_outputs))
else:
# Check for conflicts
for node_id, node_info in new_graph.items():
new_node_ids.append(node_id)
display_id = node_info.get("override_display_id", unique_id)
dynprompt.add_ephemeral_node(node_id, node_info, unique_id, display_id)
# Figure out if the newly created node is an output node
class_type = node_info["class_type"]
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
new_output_ids.append(node_id)
for i in range(len(node_outputs)):
if is_link(node_outputs[i]):
from_node_id, from_socket = node_outputs[i][0], node_outputs[i][1]
new_output_links.append((from_node_id, from_socket))
cached_outputs.append((True, node_outputs))
new_node_ids = set(new_node_ids)
for cache in caches.all:
cache.ensure_subcache_for(unique_id, new_node_ids).clean_unused()
for node_id in new_output_ids:
execution_list.add_node(node_id)
for link in new_output_links:
execution_list.add_strong_link(link[0], link[1], unique_id)
pending_subgraph_results[unique_id] = cached_outputs
return (ExecutionResult.PENDING, None, None)
caches.outputs.set(unique_id, output_data)
except comfy.model_management.InterruptProcessingException as iex:
logging.info("Processing interrupted")
# skip formatting inputs/outputs
error_details = {
"node_id": real_node_id,
}
return (ExecutionResult.FAILURE, error_details, iex)
except Exception as ex:
typ, _, tb = sys.exc_info()
exception_type = full_type_name(typ)
input_data_formatted = {}
if input_data_all is not None:
input_data_formatted = {}
for name, inputs in input_data_all.items():
input_data_formatted[name] = [format_value(x) for x in inputs]
logging.error(f"!!! Exception during processing !!! {ex}")
logging.error(traceback.format_exc())
error_details = {
"node_id": real_node_id,
"exception_message": str(ex),
"exception_type": exception_type,
"traceback": traceback.format_tb(tb),
"current_inputs": input_data_formatted
}
if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
logging.error("Got an OOM, unloading all loaded models.")
comfy.model_management.unload_all_models()
return (ExecutionResult.FAILURE, error_details, ex)
executed.add(unique_id)
return (ExecutionResult.SUCCESS, None, None)
class IsChangedCache:
def __init__(self, dynprompt, outputs_cache):
self.dynprompt = dynprompt
self.outputs_cache = outputs_cache
self.is_changed = {}
def get(self, node_id):
if node_id in self.is_changed:
return self.is_changed[node_id]
node = self.dynprompt.get_node(node_id)
class_type = node["class_type"]
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if not hasattr(class_def, "IS_CHANGED"):
self.is_changed[node_id] = False
return self.is_changed[node_id]
if "is_changed" in node:
self.is_changed[node_id] = node["is_changed"]
return self.is_changed[node_id]
# Intentionally do not use cached outputs here. We only want constants in IS_CHANGED
input_data_all, _ = get_input_data(node["inputs"], class_def, node_id, None)
try:
is_changed = _map_node_over_list(class_def, input_data_all, "IS_CHANGED")
node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed]
except Exception as e:
logging.warning("WARNING: {}".format(e))
node["is_changed"] = float("NaN")
finally:
self.is_changed[node_id] = node["is_changed"]
return self.is_changed[node_id]
status_messages = []
def add_message(servers, event, data: dict, broadcast: bool):
data = {
**data,
"timestamp": int(time.time() * 1000),
}
status_messages.append((event, data))
"""if servers.client_id is not None or broadcast:
servers.send_sync(event, data, servers.client_id)"""
def handle_execution_error(servers, prompt_id, prompt, current_outputs, executed, error, ex):
node_id = error["node_id"]
class_type = prompt[node_id]["class_type"]
# First, send back the status to the frontend depending
# on the exception type
if isinstance(ex, comfy.model_management.InterruptProcessingException):
mes = {
"prompt_id": prompt_id,
"node_id": node_id,
"node_type": class_type,
"executed": list(executed),
}
add_message(servers, "execution_interrupted", mes, broadcast=True)
else:
mes = {
"prompt_id": prompt_id,
"node_id": node_id,
"node_type": class_type,
"executed": list(executed),
"exception_message": error["exception_message"],
"exception_type": error["exception_type"],
"traceback": error["traceback"],
"current_inputs": error["current_inputs"],
"current_outputs": list(current_outputs),
}
add_message(servers, "execution_error", mes, broadcast=False)
def execute(server, prompt, prompt_id, extra_data={}, execute_outputs=[]):
nodes.interrupt_processing(False)
if "client_id" in extra_data:
server.client_id = extra_data["client_id"]
status_messages = []
add_message(server,"execution_start", {"prompt_id": prompt_id}, broadcast=False)
with torch.inference_mode():
dynamic_prompt = DynamicPrompt(prompt)
is_changed_cache = IsChangedCache(dynamic_prompt, caches.outputs)
for cache in caches.all:
cache.set_prompt(dynamic_prompt, prompt.keys(), is_changed_cache)
cache.clean_unused()
cached_nodes = []
for node_id in prompt:
if caches.outputs.get(node_id) is not None:
cached_nodes.append(node_id)
comfy.model_management.cleanup_models(keep_clone_weights_loaded=True)
add_message(server, "execution_cached",{"nodes": cached_nodes, "prompt_id": prompt_id}, broadcast=False)
pending_subgraph_results = {}
executed = set()
execution_list = ExecutionList(dynamic_prompt, caches.outputs)
current_outputs = caches.outputs.all_node_ids()
for node_id in list(execute_outputs):
execution_list.add_node(node_id)
while not execution_list.is_empty():
node_id, error, ex = execution_list.stage_node_execution()
if error is not None:
handle_execution_error(server, prompt_id, dynamic_prompt.original_prompt, current_outputs, executed,
error, ex)
break
if "type" in prompt[node_id]["inputs"] and prompt[node_id]["inputs"]["type"] in ["IMAGE", "LATENT"]:
logging.info("node : {} {} image_count => {}".format(node_id, prompt[node_id]["class_type"],
len(prompt[node_id]["inputs"]["default"])))
else:
logging.info(
"node : {} {} {}".format(node_id, prompt[node_id]["class_type"], prompt[node_id]["inputs"]))
result, error, ex = executes(server, dynamic_prompt, caches, node_id, extra_data, executed,
prompt_id, execution_list, pending_subgraph_results)
success = result != ExecutionResult.FAILURE
if result == ExecutionResult.FAILURE:
handle_execution_error(server, prompt_id, dynamic_prompt.original_prompt, current_outputs, executed,
error, ex)
break
elif result == ExecutionResult.PENDING:
execution_list.unstage_node_execution()
else: # result == ExecutionResult.SUCCESS:
execution_list.complete_node_execution()
else:
# Only execute when the while-loop ends without break
#print("execution_success", prompt_id)
add_message(server, "execution_success", {"prompt_id": prompt_id}, broadcast=False)
ui_outputs = {}
meta_outputs = {}
all_node_ids = caches.ui.all_node_ids()
for node_id in all_node_ids:
ui_info = caches.ui.get(node_id)
if ui_info is not None:
ui_outputs[node_id] = ui_info["output"]
meta_outputs[node_id] = ui_info["meta"]
history_result = {"outputs": ui_outputs, "meta": meta_outputs,}
for node_id in history_result["outputs"]:
for output in history_result["outputs"][node_id]:
if type(history_result["outputs"][node_id][output]) == torch.Tensor:
logging.info("output : {} {} image_count => {}".format(node_id, prompt[node_id]["class_type"],
len(history_result["outputs"][node_id][output])))
elif len(str(history_result["outputs"][node_id][output])) > 100:
logging.info("output : {} {} {}".format(node_id, prompt[node_id]["class_type"],
str(history_result["outputs"][node_id][output])[:100]))
else:
logging.info("output : {} {}".format(node_id, history_result["outputs"][node_id][output]))
server.last_node_id = None
"""if comfy.model_management.DISABLE_SMART_MEMORY:
comfy.model_management.unload_all_models()"""
return history_result
def recursive_delete(workflow, to_delete):
# workflow_copy = copy.deepcopy(workflow)
new_delete = []
for node_id in to_delete:
for node_id2, node in workflow.items():
for input_name, input_value in node["inputs"].items():
if type(input_value) == list:
if len(input_value) > 0:
if input_value[0] == node_id:
new_delete.append(node_id2)
if node_id in workflow:
del workflow[node_id]
if len(new_delete) > 0:
workflow = recursive_delete(workflow, new_delete)
return workflow
class Workflow(SaveImage):
def __init__(self):
self.logger = Logger()
self.ws = None
@classmethod
def INPUT_TYPES(cls):
return {
"hidden": {
"workflows": ("STRING", {"default": ""})
}}
RETURN_TYPES = (
AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"),
AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"), AnyType("*"),
)
FUNCTION = "generate"
CATEGORY = "FlowChain ⛓️"
OUTPUT_NODE = True
@classmethod
def IS_CHANGED(s, workflows, **kworgs):
m = hashlib.sha256()
m.update(workflows.encode())
return m.digest().hex()
def generate(self, workflows, **kwargs):
# get current file path
def get_workflow(workflow_name):
with urllib.request.urlopen(
"http://{}/flowchain/workflow?workflow_path={}".format(server_address, workflow_name)) as response:
workflow = json.loads(response.read())
return workflow["workflow"]
def populate_inputs(workflow, inputs, kwargs_values):
workflow_inputs = {k: v for k, v in workflow.items() if v["class_type"] == "WorkflowInput"}
for key, value in workflow_inputs.items():
if value["inputs"]["Name"] in inputs:
if type(inputs[value["inputs"]["Name"]]) == list:
if value["inputs"]["Name"] in kwargs_values:
workflow[key]["inputs"]["default"] = kwargs_values[value["inputs"]["Name"]]
else:
workflow[key]["inputs"]["default"] = inputs[value["inputs"]["Name"]]
workflow_inputs_images = {k: v for k, v in workflow.items() if
v["class_type"] == "WorkflowInput" and v["inputs"]["type"] == "IMAGE"}
for key, value in workflow_inputs_images.items():
if "default" not in value["inputs"]:
workflow[key]["inputs"]["default"] = torch.tensor([])
else:
if value["inputs"]["default"] == []:
workflow[key]["inputs"]["default"] = torch.tensor([])
return workflow
def treat_switch(workflow):
to_delete = []
#do_net_delete = []
switch_to_delete = [-1]
while len(switch_to_delete) > 0:
switch_nodes = {k: v for k, v in workflow.items() if
v["class_type"].startswith("Switch") and v["class_type"].endswith("[Crystools]")}
# order switch nodes by inputs.boolean value
switch_to_delete = []
switch_nodes_copy = copy.deepcopy(switch_nodes)
for switch_id, switch_node in switch_nodes.items():
# create list of inputs who have switch in their inputs
"""inputs_from_switch = {node_id: node for node_id, node in workflow.items() if any(
input_value[0] == switch_id for input_value in node["inputs"].values() if type(input_value) == list)}"""
inputs_from_switch = []
for node_ids, node in workflow.items():
for input_name, input_value in node["inputs"].items():
if type(input_value) == list:
if len(input_value) > 0:
if input_value[0] == switch_id:
inputs_from_switch.append({node_ids: input_name})
# convert to dictionary
inputs_from_switch = {k: v for d in inputs_from_switch for k, v in d.items()}
switch = switch_nodes_copy[switch_id]
for node_id, input_name in inputs_from_switch.items():
if type(switch["inputs"]["boolean"]) == list:
switch_boolean_value = workflow[switch["inputs"]["boolean"][0]]["inputs"]
other_input_name = None
if "default" in switch_boolean_value:
other_input_name = "default"
elif "boolean" in switch_boolean_value:
other_input_name = "boolean"
if other_input_name is not None:
if switch_boolean_value[other_input_name] == True:
if type(switch["inputs"]["on_true"]) == list:
workflow[node_id]["inputs"][input_name] = switch["inputs"]["on_true"]
if node_id in switch_nodes_copy:
switch_nodes_copy[node_id]["inputs"][input_name] = switch["inputs"]["on_true"]
else:
to_delete.append(node_id)
else:
if type(switch["inputs"]["on_false"]) == list:
workflow[node_id]["inputs"][input_name] = switch["inputs"]["on_false"]
if node_id in switch_nodes_copy:
switch_nodes_copy[node_id]["inputs"][input_name] = switch["inputs"]["on_false"]
else:
to_delete.append(node_id)
switch_to_delete.append(switch_id)
else:
if switch["inputs"]["boolean"] == True:
if type(switch["inputs"]["on_true"]) == list:
workflow[node_id]["inputs"][input_name] = switch["inputs"]["on_true"]
if node_id in switch_nodes_copy:
switch_nodes_copy[node_id]["inputs"][input_name] = switch["inputs"]["on_true"]
else:
to_delete.append(node_id)
else:
if type(switch["inputs"]["on_false"]) == list:
workflow[node_id]["inputs"][input_name] = switch["inputs"]["on_false"]
if node_id in switch_nodes_copy:
switch_nodes_copy[node_id]["inputs"][input_name] = switch["inputs"]["on_false"]
else:
to_delete.append(node_id)
switch_to_delete.append(switch_id)
print(switch_to_delete)
workflow = {k: v for k, v in workflow.items() if
not (v["class_type"].startswith("Switch") and v["class_type"].endswith(
"[Crystools]") and k in switch_to_delete)}
return workflow, to_delete
def treat_continue(workflow):
to_delete = []
continue_nodes = {k: v for k, v in workflow.items() if
v["class_type"].startswith("WorkflowContinue")}
do_net_delete = []
for continue_node_id, continue_node in continue_nodes.items():
for node_id, node in workflow.items():
for input_name, input_value in node["inputs"].items():
if type(input_value) == list:
if len(input_value) > 0:
if input_value[0] == continue_node_id:
if type(continue_node["inputs"]["continue_workflow"]) == list:
input_other_node = \
workflow[continue_node["inputs"]["continue_workflow"][0]][
"inputs"]
other_input_name = None
if "default" in input_other_node:
other_input_name = "default"
elif "boolean" in input_other_node:
other_input_name = "boolean"
if other_input_name is not None:
if input_other_node[other_input_name]:
workflow[node_id]["inputs"][input_name] = continue_node["inputs"]["input"]
else:
to_delete.append(node_id)
else:
do_net_delete.append(continue_node_id)
else:
if continue_node["inputs"]["continue_workflow"]:
workflow[node_id]["inputs"][input_name] = continue_node["inputs"]["input"]
else:
to_delete.append(node_id)
workflow = {k: v for k, v in workflow.items() if
not (v["class_type"].startswith("WorkflowContinue") and k not in do_net_delete)}
return workflow, to_delete
def redefine_id(subworkflow, max_id):
new_sub_workflow = {}
for k, v in subworkflow.items():
max_id += 1
new_sub_workflow[str(max_id)] = v
# replace old id by new id items in inputs of workflow
for node_id, node in subworkflow.items():
for input_name, input_value in node["inputs"].items():
if type(input_value) == list:
if len(input_value) > 0:
if input_value[0] == k:
subworkflow[node_id]["inputs"][input_name][0] = str(max_id)
for node_id, node in new_sub_workflow.items():
for input_name, input_value in node["inputs"].items():
if type(input_value) == list:
if len(input_value) > 0:
if input_value[0] == k:
new_sub_workflow[node_id]["inputs"][input_name][0] = str(max_id)
return new_sub_workflow, max_id
def change_subnode(subworkflow, node_id_to_find, value):
for node_id, node in subworkflow.items():
for input_name, input_value in node["inputs"].items():
if type(input_value) == list:
if len(input_value) > 0:
if input_value[0] == node_id_to_find:
subworkflow[node_id]["inputs"][input_name] = value
return subworkflow
def merge_inputs_outputs(workflow, workflow_name, subworkflow, workflow_outputs):
# get max workflow id
# coinvert workflow_outputs to list
workflow_outputs = list(workflow_outputs.values())
workflow_node = {"node": {"id":k, **v} for k, v in workflow.items() if v["class_type"] == "Workflow" and v["inputs"]["workflows"] == workflow_name}
sub_input_nodes = {k: v for k, v in subworkflow.items() if v["class_type"] == "WorkflowInput"}
do_not_delete = []
for sub_id, sub_node in sub_input_nodes.items():
if sub_node["inputs"]["Name"] in workflow_node["node"]["inputs"]:
value = workflow_node["node"]["inputs"][sub_node["inputs"]["Name"]]
if type(value) == list:
subworkflow = change_subnode(subworkflow, sub_id, value)
else:
subworkflow[sub_id]["inputs"]["default"] = value
do_not_delete.append(sub_id)
# remove input node
subworkflow = {k: v for k, v in subworkflow.items() if not (v["class_type"] == "WorkflowInput" and k not in do_not_delete)}
sub_output_nodes = {k: v for k, v in subworkflow.items() if v["class_type"] == "WorkflowOutput"}
workflow_copy = copy.deepcopy(workflow)
for node_id, node in workflow_copy.items():
for input_name, input_value in node["inputs"].items():
if type(input_value) == list:
if len(input_value) > 0:
if input_value[0] == workflow_node["node"]["id"]:
for sub_output_id, sub_output_node in sub_output_nodes.items():
if sub_output_node["inputs"]["Name"] == workflow_outputs[input_value[1]]["inputs"]["Name"]:
workflow[node_id]["inputs"][input_name] = sub_output_node["inputs"]["default"]
# remove output node
subworkflow = {k: v for k, v in subworkflow.items() if not (v["class_type"] == "WorkflowOutput")}
return workflow, subworkflow
def clean_workflow(workflow, inputs=None, kwargs_values=None):
if kwargs_values is None:
kwargs_values = {}
if inputs is None:
inputs = {}
if inputs is not None:
workflow = populate_inputs(workflow, inputs, kwargs_values)
workflow_outputs = {k: v for k, v in workflow.items() if v["class_type"] == "WorkflowOutput"}
for output_id, output_node in workflow_outputs.items():
workflow[output_id]["inputs"]["ui"] = False
workflow, switch_to_delete = treat_switch(workflow)
workflow, continue_to_delete = treat_continue(workflow)
workflow = recursive_delete(workflow, switch_to_delete + continue_to_delete)
return workflow, workflow_outputs
def get_recursive_workflow(workflows, max_id=0):
workflow = get_workflow(workflows)
workflow, max_id = redefine_id(workflow, max_id)
sub_workflows = {k: v for k, v in workflow.items() if v["class_type"] == "Workflow"}
for key, sub_workflow_node in sub_workflows.items():
workflow_name = sub_workflow_node["inputs"]["workflows"]
subworkflow, max_id = get_recursive_workflow(workflow_name, max_id)
#subworkflow = get_workflow(workflow_name)
#max_id = max([int(k) for k in workflow.keys() if k.isdigit()])
# change all id in subworkflow
#subworkflow = redefine_id(subworkflow["workflow"], max_id)
workflow_outputs_sub = {k: v for k, v in subworkflow.items() if v["class_type"] == "WorkflowOutput"}
workflow, subworkflow = merge_inputs_outputs(workflow, workflow_name, subworkflow, workflow_outputs_sub)
# sub_workflow, workflow_outputs_sub = treat_workflow(subworkflow)
workflow = {k: v for k, v in workflow.items() if
not (v["class_type"] == "Workflow" and v["inputs"]["workflows"] == workflow_name)}
# add subworkflow to workflow
workflow.update(subworkflow)
return workflow, max_id
with urllib.request.urlopen("http://{}/queue".format(server_address)) as response:
queue_info = json.loads(response.read())
original_inputs = [v["inputs"] for k, v in queue_info["queue_running"][0][2].items() if
"workflows" in v["inputs"] and v["inputs"]["workflows"] == workflows][0]
workflow, _ = get_recursive_workflow(workflows, 5000)
workflow, workflow_outputs = clean_workflow(workflow, original_inputs, kwargs)
workflow_outputs_id = [k for k, v in workflow.items() if v["class_type"] == "WorkflowOutput"]
prompt_id = str(uuid.uuid4())
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
servers = server.PromptServer(loop)
servers.last_prompt_id = prompt_id
servers.client_id = client_id
execution_start_time = time.perf_counter()
logging.info("workflow : {}".format(workflows))
history_result = execute(servers, workflow, prompt_id, {}, workflow_outputs_id)
current_time = time.perf_counter()
execution_time = current_time - execution_start_time
logging.info("Prompt executed in {:.2f} seconds".format(execution_time))
comfy.model_management.unload_all_models()
del servers
gc.collect()
output = []
for id_node, node in workflow_outputs.items():
if id_node in history_result["outputs"]:
mask = history_result["outputs"][id_node]["default"]
# create hash from mask + node name
"""hash = hashlib.sha256(mask
hash = hash.update(node["inputs"]["Name"].encode())
filename_prefix = node["inputs"]["Name"]+"/"+hash
if node["inputs"]["type"] == "IMAGE":
self.save_images(history_result["outputs"][id_node]["default"], filename_prefix)
elif node["inputs"]["type"] == "MASK":
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
self.save_images(preview, filename_prefix)"""
output.append(history_result["outputs"][id_node]["default"])
else:
if node["inputs"]["type"] == "IMAGE" or node["inputs"]["type"] == "MASK":
black_image_np = np.zeros((255, 255, 3), dtype=np.uint8)
black_image_pil = Image.fromarray(black_image_np)
transform = transforms.ToTensor()
image_tensor = transform(black_image_pil)
image_tensor = image_tensor.permute(1, 2, 0)
image_tensor = image_tensor.unsqueeze(0)
output.append(image_tensor)
else:
output.append(None)
return tuple(output)
# return tuple(queue[uid]["outputs"])
NODE_CLASS_MAPPINGS_WORKFLOW = {
"Workflow": Workflow,
}
NODE_DISPLAY_NAME_MAPPINGS_WORKFLOW = {
"Workflow": "Workflow (FlowChain ⛓️)",
}