forked from optuna/optuna
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_distributions.py
443 lines (335 loc) · 15.8 KB
/
test_distributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import copy
import json
from typing import Any
from typing import Dict
from typing import List
import warnings
import pytest
from optuna import distributions
EXAMPLE_DISTRIBUTIONS: Dict[str, Any] = {
"u": distributions.UniformDistribution(low=1.0, high=2.0),
"l": distributions.LogUniformDistribution(low=0.001, high=100),
"du": distributions.DiscreteUniformDistribution(low=1.0, high=9.0, q=2.0),
"iu": distributions.IntUniformDistribution(low=1, high=9, step=2),
"c1": distributions.CategoricalDistribution(choices=(2.71, -float("inf"))),
"c2": distributions.CategoricalDistribution(choices=("Roppongi", "Azabu")),
"c3": distributions.CategoricalDistribution(choices=["Roppongi", "Azabu"]),
"ilu": distributions.IntLogUniformDistribution(low=2, high=12, step=2),
}
EXAMPLE_JSONS = {
"u": '{"name": "UniformDistribution", "attributes": {"low": 1.0, "high": 2.0}}',
"l": '{"name": "LogUniformDistribution", "attributes": {"low": 0.001, "high": 100}}',
"du": '{"name": "DiscreteUniformDistribution",'
'"attributes": {"low": 1.0, "high": 9.0, "q": 2.0}}',
"iu": '{"name": "IntUniformDistribution", "attributes": {"low": 1, "high": 9, "step": 2}}',
"c1": '{"name": "CategoricalDistribution", "attributes": {"choices": [2.71, -Infinity]}}',
"c2": '{"name": "CategoricalDistribution", "attributes": {"choices": ["Roppongi", "Azabu"]}}',
"c3": '{"name": "CategoricalDistribution", "attributes": {"choices": ["Roppongi", "Azabu"]}}',
"ilu": '{"name": "IntLogUniformDistribution", '
'"attributes": {"low": 2, "high": 12, "step": 2}}',
}
EXAMPLE_ABBREVIATED_JSONS = {
"u": '{"type": "float", "low": 1.0, "high": 2.0}',
"l": '{"type": "float", "low": 0.001, "high": 100, "log": true}',
"du": '{"type": "float", "low": 1.0, "high": 9.0, "step": 2.0}',
"iu": '{"type": "int", "low": 1, "high": 9, "step": 2}',
"c1": '{"type": "categorical", "choices": [2.71, -Infinity]}',
"c2": '{"type": "categorical", "choices": ["Roppongi", "Azabu"]}',
"c3": '{"type": "categorical", "choices": ["Roppongi", "Azabu"]}',
"ilu": '{"type": "int", "low": 2, "high": 12, "step": 2, "log": true}',
}
def test_json_to_distribution() -> None:
for key in EXAMPLE_JSONS:
distribution_actual = distributions.json_to_distribution(EXAMPLE_JSONS[key])
assert distribution_actual == EXAMPLE_DISTRIBUTIONS[key]
unknown_json = '{"name": "UnknownDistribution", "attributes": {"low": 1.0, "high": 2.0}}'
pytest.raises(ValueError, lambda: distributions.json_to_distribution(unknown_json))
def test_abbreviated_json_to_distribution() -> None:
for key in EXAMPLE_ABBREVIATED_JSONS:
distribution_actual = distributions.json_to_distribution(EXAMPLE_ABBREVIATED_JSONS[key])
assert distribution_actual == EXAMPLE_DISTRIBUTIONS[key]
unknown_json = '{"type": "unknown", "low": 1.0, "high": 2.0}'
pytest.raises(ValueError, lambda: distributions.json_to_distribution(unknown_json))
invalid_distribution = (
'{"type": "float", "low": 0.0, "high": -100.0}',
'{"type": "float", "low": 7.3, "high": 7.2, "log": true}',
'{"type": "float", "low": -30.0, "high": -40.0, "step": 3.0}',
'{"type": "float", "low": 1.0, "high": 100.0, "step": 0.0}',
'{"type": "float", "low": 1.0, "high": 100.0, "step": -1.0}',
'{"type": "int", "low": 123, "high": 100}',
'{"type": "int", "low": 123, "high": 100, "step": 2}',
'{"type": "int", "low": 123, "high": 100, "log": true}',
'{"type": "int", "low": 1, "high": 100, "step": 0}',
'{"type": "int", "low": 1, "high": 100, "step": -1}',
'{"type": "categorical", "choices": []}',
)
for distribution in invalid_distribution:
pytest.raises(ValueError, lambda: distributions.json_to_distribution(distribution))
def test_backward_compatibility_int_uniform_distribution() -> None:
json_str = '{"name": "IntUniformDistribution", "attributes": {"low": 1, "high": 10}}'
actual = distributions.json_to_distribution(json_str)
expected = distributions.IntUniformDistribution(low=1, high=10)
assert actual == expected
def test_distribution_to_json() -> None:
for key in EXAMPLE_JSONS:
json_actual = distributions.distribution_to_json(EXAMPLE_DISTRIBUTIONS[key])
assert json.loads(json_actual) == json.loads(EXAMPLE_JSONS[key])
def test_check_distribution_compatibility() -> None:
# test the same distribution
for key in EXAMPLE_JSONS:
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS[key], EXAMPLE_DISTRIBUTIONS[key]
)
# test different distribution classes
pytest.raises(
ValueError,
lambda: distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["u"], EXAMPLE_DISTRIBUTIONS["l"]
),
)
# test dynamic value range (CategoricalDistribution)
pytest.raises(
ValueError,
lambda: distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["c2"],
distributions.CategoricalDistribution(choices=("Roppongi", "Akasaka")),
),
)
# test dynamic value range (except CategoricalDistribution)
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["u"], distributions.UniformDistribution(low=-3.0, high=-2.0)
)
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["l"], distributions.LogUniformDistribution(low=0.1, high=1.0)
)
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["du"],
distributions.DiscreteUniformDistribution(low=-1.0, high=11.0, q=3.0),
)
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["iu"], distributions.IntUniformDistribution(low=-1, high=1)
)
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["ilu"], distributions.IntLogUniformDistribution(low=1, high=13)
)
def test_contains() -> None:
u = distributions.UniformDistribution(low=1.0, high=2.0)
assert not u._contains(0.9)
assert u._contains(1)
assert u._contains(1.5)
assert u._contains(2)
assert not u._contains(2.1)
lu = distributions.LogUniformDistribution(low=0.001, high=100)
assert not lu._contains(0.0)
assert lu._contains(0.001)
assert lu._contains(12.3)
assert lu._contains(100)
assert not lu._contains(1000)
with warnings.catch_warnings():
# UserWarning will be raised since the range is not divisible by 2.
# The range will be replaced with [1.0, 9.0].
warnings.simplefilter("ignore", category=UserWarning)
du = distributions.DiscreteUniformDistribution(low=1.0, high=10.0, q=2.0)
assert not du._contains(0.9)
assert du._contains(1.0)
assert not du._contains(3.5)
assert not du._contains(6)
assert du._contains(9)
assert not du._contains(9.1)
assert not du._contains(10)
iu = distributions.IntUniformDistribution(low=1, high=10)
assert not iu._contains(0.9)
assert iu._contains(1)
assert iu._contains(4)
assert iu._contains(6)
assert iu._contains(10)
assert not iu._contains(10.1)
assert not iu._contains(11)
# IntUniformDistribution with a 'step' parameter.
with warnings.catch_warnings():
# UserWarning will be raised since the range is not divisible by 2.
# The range will be replaced with [1, 9].
warnings.simplefilter("ignore", category=UserWarning)
iuq = distributions.IntUniformDistribution(low=1, high=10, step=2)
assert not iuq._contains(0.9)
assert iuq._contains(1)
assert not iuq._contains(4)
assert not iuq._contains(6)
assert iuq._contains(9)
assert not iuq._contains(9.1)
assert not iuq._contains(10)
c = distributions.CategoricalDistribution(choices=("Roppongi", "Azabu"))
assert not c._contains(-1)
assert c._contains(0)
assert c._contains(1)
assert c._contains(1.5)
assert not c._contains(3)
ilu = distributions.IntLogUniformDistribution(low=2, high=12)
assert not ilu._contains(0.9)
assert ilu._contains(2)
assert ilu._contains(4)
assert ilu._contains(6)
assert ilu._contains(12)
assert not ilu._contains(12.1)
assert not ilu._contains(13)
# `step` is ignored and assumed to be 1.
iluq = distributions.IntLogUniformDistribution(low=2, high=7, step=2)
assert not iluq._contains(0.9)
assert iluq._contains(2)
assert iluq._contains(4)
assert iluq._contains(5)
assert iluq._contains(6)
assert iluq._contains(7)
assert not iluq._contains(7.1)
assert not iluq._contains(8)
def test_empty_range_contains() -> None:
u = distributions.UniformDistribution(low=1.0, high=1.0)
assert not u._contains(0.9)
assert u._contains(1.0)
assert not u._contains(1.1)
lu = distributions.LogUniformDistribution(low=1.0, high=1.0)
assert not lu._contains(0.9)
assert lu._contains(1.0)
assert not lu._contains(1.1)
du = distributions.DiscreteUniformDistribution(low=1.0, high=1.0, q=2.0)
assert not du._contains(0.9)
assert du._contains(1.0)
assert not du._contains(1.1)
iu = distributions.IntUniformDistribution(low=1, high=1)
assert not iu._contains(0)
assert iu._contains(1)
assert not iu._contains(2)
iuq = distributions.IntUniformDistribution(low=1, high=1, step=2)
assert not iuq._contains(0)
assert iuq._contains(1)
assert not iuq._contains(2)
ilu = distributions.IntLogUniformDistribution(low=1, high=1)
assert not ilu._contains(0)
assert ilu._contains(1)
assert not ilu._contains(2)
iluq = distributions.IntLogUniformDistribution(low=1, high=1, step=2)
assert not iluq._contains(0)
assert iluq._contains(1)
assert not iluq._contains(2)
def test_single() -> None:
with warnings.catch_warnings():
# UserWarning will be raised since the range is not divisible by step.
warnings.simplefilter("ignore", category=UserWarning)
single_distributions: List[distributions.BaseDistribution] = [
distributions.UniformDistribution(low=1.0, high=1.0),
distributions.LogUniformDistribution(low=7.3, high=7.3),
distributions.DiscreteUniformDistribution(low=2.22, high=2.22, q=0.1),
distributions.DiscreteUniformDistribution(low=2.22, high=2.24, q=0.3),
distributions.IntUniformDistribution(low=-123, high=-123),
distributions.IntUniformDistribution(low=-123, high=-120, step=4),
distributions.CategoricalDistribution(choices=("foo",)),
distributions.IntLogUniformDistribution(low=2, high=2),
]
for distribution in single_distributions:
assert distribution.single()
nonsingle_distributions: List[distributions.BaseDistribution] = [
distributions.UniformDistribution(low=1.0, high=1.001),
distributions.LogUniformDistribution(low=7.3, high=10),
distributions.DiscreteUniformDistribution(low=-30, high=-20, q=2),
distributions.DiscreteUniformDistribution(low=-30, high=-20, q=10),
# In Python, "0.3 - 0.2 != 0.1" is True.
distributions.DiscreteUniformDistribution(low=0.2, high=0.3, q=0.1),
distributions.DiscreteUniformDistribution(low=0.7, high=0.8, q=0.1),
distributions.IntUniformDistribution(low=-123, high=0),
distributions.IntUniformDistribution(low=-123, high=0, step=123),
distributions.CategoricalDistribution(choices=("foo", "bar")),
distributions.IntLogUniformDistribution(low=2, high=4),
]
for distribution in nonsingle_distributions:
assert not distribution.single()
def test_empty_distribution() -> None:
# Empty distributions cannot be instantiated.
with pytest.raises(ValueError):
distributions.UniformDistribution(low=0.0, high=-100.0)
with pytest.raises(ValueError):
distributions.LogUniformDistribution(low=7.3, high=7.2)
with pytest.raises(ValueError):
distributions.DiscreteUniformDistribution(low=-30, high=-40, q=3)
with pytest.raises(ValueError):
distributions.IntUniformDistribution(low=123, high=100)
with pytest.raises(ValueError):
distributions.IntUniformDistribution(low=123, high=100, step=2)
with pytest.raises(ValueError):
distributions.CategoricalDistribution(choices=())
with pytest.raises(ValueError):
distributions.IntLogUniformDistribution(low=123, high=100)
def test_invalid_distribution() -> None:
with pytest.warns(UserWarning):
distributions.CategoricalDistribution(choices=({"foo": "bar"},)) # type: ignore
def test_eq_ne_hash() -> None:
# Two instances of a class are regarded as equivalent if the fields have the same values.
for d in EXAMPLE_DISTRIBUTIONS.values():
d_copy = copy.deepcopy(d)
assert d == d_copy
assert not d != d_copy
assert hash(d) == hash(d_copy)
# Different field values.
d0 = distributions.UniformDistribution(low=1, high=2)
d1 = distributions.UniformDistribution(low=1, high=3)
assert d0 != d1
assert not d0 == d1
assert hash(d0) != hash(d1)
# Different distribution classes.
d2 = distributions.IntUniformDistribution(low=1, high=2)
assert d0 != d2
assert not d0 == d2
assert hash(d0) != hash(d2)
# Different types.
assert d0 != 1
assert not d0 == 1
assert d0 != "foo"
assert not d0 == "foo"
def test_repr() -> None:
# The following variable is needed to apply `eval` to distribution
# instances that contain `float('inf')` as a field value.
inf = float("inf") # NOQA
for d in EXAMPLE_DISTRIBUTIONS.values():
assert d == eval("distributions." + repr(d))
def test_uniform_distribution_asdict() -> None:
assert EXAMPLE_DISTRIBUTIONS["u"]._asdict() == {"low": 1.0, "high": 2.0}
def test_log_uniform_distribution_asdict() -> None:
assert EXAMPLE_DISTRIBUTIONS["l"]._asdict() == {"low": 0.001, "high": 100}
def test_discrete_uniform_distribution_asdict() -> None:
assert EXAMPLE_DISTRIBUTIONS["du"]._asdict() == {"low": 1.0, "high": 9.0, "q": 2.0}
def test_int_uniform_distribution_asdict() -> None:
assert EXAMPLE_DISTRIBUTIONS["iu"]._asdict() == {"low": 1, "high": 9, "step": 2}
def test_int_log_uniform_distribution_asdict() -> None:
assert EXAMPLE_DISTRIBUTIONS["ilu"]._asdict() == {"low": 2, "high": 12, "step": 2}
def test_discrete_uniform_distribution_invalid_q() -> None:
with pytest.raises(ValueError):
distributions.DiscreteUniformDistribution(low=1, high=100, q=0)
with pytest.raises(ValueError):
distributions.DiscreteUniformDistribution(low=1, high=100, q=-1)
def test_int_uniform_distribution_invalid_step() -> None:
with pytest.raises(ValueError):
distributions.IntUniformDistribution(low=1, high=100, step=0)
with pytest.raises(ValueError):
distributions.IntUniformDistribution(low=1, high=100, step=-1)
def test_int_log_uniform_distribution_deprecation() -> None:
# step != 1 is deprecated
d = distributions.IntLogUniformDistribution(low=1, high=100)
with pytest.warns(FutureWarning):
# `step` should always be assumed to be 1 and samplers and other components should never
# have to get/set the attribute.
assert d.step == 1
with pytest.warns(FutureWarning):
d.step = 2
with pytest.warns(FutureWarning):
d = distributions.IntLogUniformDistribution(low=1, high=100, step=2)
with pytest.warns(FutureWarning):
assert d.step == 2
with pytest.warns(FutureWarning):
d.step = 1
assert d.step == 1
with pytest.warns(FutureWarning):
d.step = 2
assert d.step == 2
def test_categorical_distribution_different_sequence_types() -> None:
c1 = distributions.CategoricalDistribution(choices=("Roppongi", "Azabu"))
c2 = distributions.CategoricalDistribution(choices=["Roppongi", "Azabu"])
assert c1 == c2