diff --git a/libtommath/bn_mp_prime_is_prime.c b/libtommath/bn_mp_prime_is_prime.c index c23685d6c..6af5c2c75 100644 --- a/libtommath/bn_mp_prime_is_prime.c +++ b/libtommath/bn_mp_prime_is_prime.c @@ -332,16 +332,15 @@ int mp_prime_is_prime(const mp_int *a, int t, int *result) } /* * That number might got too big and the witness has to be - * smaller than or equal to "a" + * smaller than "a" */ len = mp_count_bits(&b); - if (len > size_a) { - len = len - size_a; + if (len >= size_a) { + len = (len - size_a) + 1; if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) { goto LBL_B; } } - /* Although the chance for b <= 3 is miniscule, try again. */ if (mp_cmp_d(&b, 3uL) != MP_GT) { ix--; diff --git a/libtommath/bn_mp_prime_next_prime.c b/libtommath/bn_mp_prime_next_prime.c index ad4c2e3e7..3592c8606 100644 --- a/libtommath/bn_mp_prime_next_prime.c +++ b/libtommath/bn_mp_prime_next_prime.c @@ -19,7 +19,7 @@ */ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) { - int err, res = MP_NO, x, y; + int err, res = MP_NO, x, y, cmp; mp_digit res_tab[PRIME_SIZE], step, kstep; mp_int b; @@ -28,36 +28,22 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) /* simple algo if a is less than the largest prime in the table */ if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) { - /* find which prime it is bigger than */ - for (x = PRIME_SIZE - 2; x >= 0; x--) { - if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) { - if (bbs_style == 1) { - /* ok we found a prime smaller or - * equal [so the next is larger] - * - * however, the prime must be - * congruent to 3 mod 4 - */ - if ((ltm_prime_tab[x + 1] & 3u) != 3u) { - /* scan upwards for a prime congruent to 3 mod 4 */ - for (y = x + 1; y < PRIME_SIZE; y++) { - if ((ltm_prime_tab[y] & 3u) == 3u) { - mp_set(a, ltm_prime_tab[y]); - return MP_OKAY; - } - } - } + /* find which prime it is bigger than "a" */ + for (x = 0; x < PRIME_SIZE; x++) { + cmp = mp_cmp_d(a, ltm_prime_tab[x]); + if (cmp == MP_EQ) { + continue; + } + if (cmp != MP_GT) { + if ((bbs_style == 1) && ((ltm_prime_tab[x] & 3u) != 3u)) { + /* try again until we get a prime congruent to 3 mod 4 */ + continue; } else { - mp_set(a, ltm_prime_tab[x + 1]); + mp_set(a, ltm_prime_tab[x]); return MP_OKAY; } } } - /* at this point a maybe 1 */ - if (mp_cmp_d(a, 1uL) == MP_EQ) { - mp_set(a, 2uL); - return MP_OKAY; - } /* fall through to the sieve */ } @@ -75,7 +61,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) if ((a->dp[0] & 3u) != 3u) { if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) { return err; - }; + } } } else { if (mp_iseven(a) == MP_YES) { diff --git a/libtommath/bn_mp_prime_rabin_miller_trials.c b/libtommath/bn_mp_prime_rabin_miller_trials.c index 4c4051e6c..d92c20f53 100644 --- a/libtommath/bn_mp_prime_rabin_miller_trials.c +++ b/libtommath/bn_mp_prime_rabin_miller_trials.c @@ -29,8 +29,7 @@ static const struct { { 768, 5 }, { 896, 4 }, { 1024, 4 }, - { 2048, 2 }, - { 4096, 1 }, + { 2048, 2 } /* For bigger keysizes use always at least 2 Rounds */ }; /* returns # of RM trials required for a given bit size and max. error of 2^(-96)*/ @@ -45,7 +44,7 @@ int mp_prime_rabin_miller_trials(int size) return (x == 0) ? sizes[0].t : sizes[x - 1].t; } } - return sizes[x-1].t + 1; + return sizes[x-1].t; }