-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathSpatiotemporal.py
125 lines (107 loc) · 5.64 KB
/
Spatiotemporal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
# -*- conding: utf-8 -*-
import sys
import numpy as np
import torch
import torchvision
import matplotlib.pyplot as plt
from Spatiotemporal_model import *
from resnet import *
#HyperParameters
epoch_num = 100
minibatch_train = 100
minibatch_test = 10
learning_rate = 0.01
num_classes = 51
save_net = 10
classes = ('brushed_hair', 'cartwheel', 'catch', 'chew', 'clap', 'climb', 'clib_stairs', 'dive', 'draw_sword', 'dribble',
'drink', 'eat', 'fall_floor', 'fencing', 'flic_flac', 'golf', 'handstand', 'hit', 'hug', 'jump', 'kick',
'kick_ball', 'kiss', 'laugh', 'pick', 'pour', 'pullup', 'punch', 'push', 'pushup', 'ride_bike', 'ride_horse',
'run', 'shake_hands', 'shoot_ball', 'shoot_bow', 'shoot_gun', 'sit', 'situp', 'smile', 'smoke', 'somersault',
'stand', 'swing_baseball', 'sword', 'sword_exercise', 'talk', 'throw', 'turn', 'walk', 'wave')
def imshow(img):
img = img/2 + 0.5 #unnormalize [-1,1] -> [0,1]
np_img = img.numpy()
plt.imshow(np.transpose(np_img,(1,2,0)))
plt.show()
def train(net_S, net_T, pth):
print('Train start')
loader_S, loader_T = dataloader_S(minibatch_train, train=True), dataloader_T(minibatch_train, train=True)
loss_function = torch.nn.CrossEntropyLoss()
optimizer_S = torch.optim.SGD(net_S.parameters(), lr=learning_rate, momentum=0.9)
optimizer_T = torch.optim.SGD(net_T.parameters(), lr=learning_rate, momentum=0.9)
for epoch in range(1, epoch_num):
for i, (data_S, data_T) in enumerate(zip(loader_S,loader_T),1):
# get the inputs
(img_S, target_S), (img_T, target_T) = data_S, data_T
img_S, target_S = img_S.cuda(), target_S.cuda()
img_T, target_T = img_T.cuda(), target_T.cuda()
# zero the parameter gradients
optimizer_S.zero_grad()
optimizer_T.zero_grad()
# forward + backward + optimize
output_S, output_T = net_S(img_S), net_T(img_T)
loss_S, loss_T = loss_function(output_S,target_S), loss_function(output_T,target_T)
loss = loss_S + loss_T
loss.backward()
optimizer_S.step()
optimizer_T.step()
# get the accuracies
result_S = [int(torch.argmax(output_S,1)[j])==int(target_S[j]) for j in range(len(target_S))]
result_T = [int(torch.argmax(output_T,1)[j])==int(target_T[j]) for j in range(len(target_T))]
accuracy_S = round((sum(result_S)/len(result_S))*100)
accuracy_T = round((sum(result_T)/len(result_T))*100)
# print statistics
print('Spatial : [{:03}, {:03}] loss:{:.2f}, accuracy:{:03}%'
.format(epoch, i, loss_S.item(), accuracy_S), end=' ', flush=True)
print('Temporal: [{:03}, {:03}] loss:{:.2f}, accuracy:{:03}%'
.format(epoch, i, loss_T.item(), accuracy_T), end=' ', flush=True)
if i == len(loader_S):
print()
else:
print(end='\r')
if (epoch % save_net) == 0:
torch.save({'net_S_state_dict': net_S.state_dict(),
'net_T_state_dict': net_T.state_dict()}, pth)
print('Save Finished')
print('Train Finished')
def test(net_S, net_T):
print('Test Start')
loader_S, loader_T = dataloader_S(minibatch_test, train=False), dataloader_T(minibatch_test, train=False)
for i, (data_S, data_T) in enumerate(zip(loader_S, loader_T),1):
(img_S, target_S), (img_T, target_T) = data_S, data_T
img_S, target_S = img_S.cuda(), target_S.cuda()
img_T, target_T = img_T.cuda(), target_T.cuda()
with torch.no_grad():
output_S, output_T = net_S(img_S), net_T(img_T)
_, predicted_S = torch.max(output_S, 1)
_, predicted_T = torch.max(output_T, 1)
result_S = [int(torch.argmax(output_S,1)[j])==int(target_S[j]) for j in range(len(target_S))]
result_T = [int(torch.argmax(output_T,1)[j])==int(target_T[j]) for j in range(len(target_T))]
accuracy_S = round((sum(result_S)/len(result_S))*100)
accuracy_T = round((sum(result_T)/len(result_T))*100)
print('Spatial : {:03}, accuracy:{:03}%'.format(i, accuracy_S), flush=True)
print('Predicted : ', ''.join('%s '%classes[predicted_S[j]] for j in range(minibatch_test)))
print('GroundTruth : ', ''.join('%s '%classes[target_S[j]] for j in range(minibatch_test)))
imshow(torchvision.utils.make_grid(img_S.cpu(), nrow=5))
print('Temporal: {:03}, accuracy:{:03}%'.format(i, accuracy_T), flush=True)
print('Predicted : ', ''.join('%s '%classes[predicted_T[j]] for j in range(minibatch_test)))
print('GroundTruth : ', ''.join('%s '%classes[target_T[j]] for j in range(minibatch_test)))
imshow(torchvision.utils.make_grid(img_T.cpu(), nrow=5))
print('Test Finished')
def main(mode, net_name, pretrained):
# Net Assign
pth = '../pth/Spatiotemporal_'+net_name+'.pth'
net_S = eval(net_name+'(num_classes=num_classes).cuda()')
net_T = eval(net_name+'(num_classes=num_classes).cuda()')
if pretrained=='pretrained':
checkpoint = torch.load(pth)
net_S.load_state_dict(checkpoint['net_S_state_dict'])
net_T.load_state_dict(checkpoint['net_T_state_dict'])
print('Load Finished')
if mode == 'train':
train(net_S, net_T, pth)
elif mode == 'test':
test(net_S, net_T)
if __name__ == '__main__':
main(sys.argv[1], sys.argv[2], sys.argv[3])