-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmnist_mlp.py
195 lines (158 loc) · 6.28 KB
/
mnist_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch as t
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
from random import sample
from influence_functions_mlp import influence, InfluenceCalculable
import matplotlib.pyplot as plt
# Define the hyperparameters
batch_size = 128
learning_rate = 0.001
num_epochs = 20
hidden_dim = 64
input_dim = 28 * 28
output_dim = 10
device = t.device("cuda" if t.cuda.is_available() else "cpu")
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
transforms.Lambda(lambda x: x.view(-1)), # Flatten
]
)
def dataset_sample(dataset, n_samples):
indices = sample(range(len(dataset)), n_samples)
return [dataset[i] for i in indices]
class MLPBlock(InfluenceCalculable, t.nn.Module):
def __init__(self, input_dim, output_dim, use_relu=True):
super().__init__()
self.linear = t.nn.Linear(input_dim, output_dim)
self.relu = t.nn.ReLU()
self.input = None
self.use_relu = use_relu
self.d_s_l = None
self.d_w_l = None
# Save gradient of loss wrt output of linear layer (Ds_l, where s_l = self.linear(a_l_minus_1))
def hook_fn(module, grad_input, grad_output):
self.d_s_l = grad_output[0]
self.linear.register_full_backward_hook(hook_fn)
def forward(self, x):
self.input = x
x = self.linear(x)
if self.use_relu:
x = self.relu(x)
return x
def get_a_l_minus_1(self):
# Return the input to the linear layer as a homogenous vector
return (
t.cat([self.input, t.ones((self.input.shape[0], 1)).to(device)], dim=-1)
.clone()
.detach()
)
def get_d_s_l(self):
# Return the gradient of the loss wrt the output of the linear layer
return self.d_s_l.clone().detach()
def get_dims(self):
# Return the dimensions of the weights - (output_dim, input_dim)
return self.linear.weight.shape
def get_d_w_l(self):
# Return the gradient of the loss wrt the weights
w_grad = self.linear.weight.grad
b_grad = self.linear.bias.grad.unsqueeze(-1)
full_grad = t.cat([w_grad, b_grad], dim=-1)
return full_grad.clone().detach()
class MLP(t.nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim):
super().__init__()
self.fc1 = MLPBlock(input_dim, hidden_dim)
self.fc2 = MLPBlock(hidden_dim, hidden_dim)
self.fc3 = MLPBlock(hidden_dim, output_dim, use_relu=False)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
def train_model():
train_dataset = datasets.MNIST(
root="./data", train=True, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset, batch_size=batch_size, shuffle=True
)
test_dataset = datasets.MNIST(root="./data", train=False, transform=transform)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
model = MLP(input_dim, output_dim, hidden_dim)
optimizer = t.optim.Adam(model.parameters(), lr=learning_rate)
criterion = t.nn.CrossEntropyLoss()
model = model.to(device)
for epoch in range(num_epochs):
model.train()
total_loss = 0
for data, target in tqdm(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
total_loss += loss.item()
average_loss = total_loss / len(train_loader)
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {average_loss:.4f}")
model.eval()
correct = 0
total = 0
with t.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
outputs = model(data)
_, predicted = t.max(outputs.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
print(
f"Accuracy of the model on the 10000 test images: {100 * correct / total:.2f}%"
)
# Save the model checkpoint
t.save(model.state_dict(), "model.ckpt")
return model, train_dataset, test_dataset
def run_influence(model_path, n_queries, gradient_fitting_dataset_size, search_dataset_size):
model = MLP(input_dim, output_dim, hidden_dim)
model.load_state_dict(t.load(model_path))
model = model.to(device)
model.eval()
train_dataset = datasets.MNIST(
root="./data", train=True, transform=transform, download=True
)
test_dataset = datasets.MNIST(root="./data", train=False, transform=transform)
queries = dataset_sample(test_dataset, n_queries)
gradient_fitting_data = dataset_sample(train_dataset, gradient_fitting_dataset_size)
search_data = dataset_sample(train_dataset, search_dataset_size)
mlp_blocks = [model.fc1, model.fc2, model.fc3]
all_top_training_samples, all_top_influences = influence(
model, mlp_blocks, queries, gradient_fitting_data, search_data, device
)
for i, (top_samples, top_influences) in enumerate(
zip(all_top_training_samples, all_top_influences)
):
print(f"Query target: {queries[i][1]}")
# Prepare a figure for visualization
plt.clf()
plt.figure(figsize=(2 * (len(top_samples) + 1), 2))
# Display query image
plt.subplot(1, len(top_samples) + 1, 1)
query_img = queries[i][0].view(28, 28)
plt.imshow(query_img, cmap="gray")
plt.title(f"Query: {queries[i][1]}")
plt.axis("off")
for j, (sample_idx, infl) in enumerate(zip(top_samples, top_influences)):
print(f"Sample target {search_data[sample_idx][1]}: {infl:.4f}")
# Display influential training image
plt.subplot(1, len(top_samples) + 1, j + 2)
infl_img = search_data[sample_idx][0].view(28, 28)
plt.imshow(infl_img, cmap="gray")
plt.title(f"Influence: {infl:.8f}")
plt.axis("off")
plt.tight_layout()
plt.savefig(f"results_{i}.png")
if __name__ == "__main__":
# train_model()
run_influence("model.ckpt", 1, 300, 1000)