-
Notifications
You must be signed in to change notification settings - Fork 3
/
influence_functions_transformer.py
169 lines (143 loc) · 5.72 KB
/
influence_functions_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch as t
from abc import ABC, abstractmethod
from typing import List
import einops
class InfluenceCalculable(ABC):
@abstractmethod
def get_a_l_minus_1(self):
# Return the input to the linear layer
pass
@abstractmethod
def get_d_s_l(self):
# Return the gradient of the loss wrt the output of the linear layer
pass
@abstractmethod
def get_dims(self):
# Return the dimensions of the weights - (output_dim, input_dim)
pass
@abstractmethod
def get_d_w_l(self):
# Return the gradient of the loss wrt the weights
pass
def autoregressive_loss(output, target):
output = einops.rearrange(output, "b s v -> (b s) v")
target = einops.rearrange(target, "b s -> (b s)")
loss = t.nn.functional.cross_entropy(output, target)
return loss
def get_ekfac_factors_and_pseudo_grads(
model, dataset, mlp_blocks: List[InfluenceCalculable], device
):
kfac_input_covs = [
t.zeros((b.get_dims()[1] + 1, b.get_dims()[1] + 1)).to(device)
for b in mlp_blocks
]
kfac_grad_covs = [
t.zeros((b.get_dims()[0], b.get_dims()[0])).to(device) for b in mlp_blocks
]
grads = [[] for _ in range(len(mlp_blocks))]
tot = 0
for data, target in dataset:
model.zero_grad()
data = data.to(device)
target = target.to(device)
if len(data.shape) == 1:
data = data.unsqueeze(0)
target = target.unsqueeze(0)
output = model(data)
loss = autoregressive_loss(output, target)
for i, block in enumerate(mlp_blocks):
a_l_minus_1 = block.get_a_l_minus_1()
input_covs = t.einsum("...ti,...tj->tij", a_l_minus_1, a_l_minus_1)
kfac_input_covs[i] += input_covs.mean(dim=0)
loss.backward()
for i, block in enumerate(mlp_blocks):
d_s_l = block.get_d_s_l()
grad_cov = t.einsum("...ti,...tj->tij", d_s_l, d_s_l)
kfac_grad_covs[i] += grad_cov.mean(dim=0)
grads[i].append(block.get_d_w_l())
tot += 1
kfac_input_covs = [A / tot for A in kfac_input_covs]
kfac_grad_covs = [S / tot for S in kfac_grad_covs]
return kfac_input_covs, kfac_grad_covs, grads
def get_grads(model, dataset, mlp_blocks: List[InfluenceCalculable], device):
grads = [[] for _ in range(len(mlp_blocks))]
for data, target in dataset:
model.zero_grad()
data = data.to(device)
target = target.to(device)
if len(data.shape) == 1:
data = data.unsqueeze(0)
target = target.unsqueeze(0)
output = model(data)
loss = autoregressive_loss(output, target)
loss.backward()
for i, block in enumerate(mlp_blocks):
grads[i].append(block.get_d_w_l())
return grads
def compute_lambda_ii(train_grads, q_a, q_s):
"""Compute Lambda_ii values for a block."""
n_examples = len(train_grads)
squared_projections_sum = 0.0
for j in range(n_examples):
dtheta = train_grads[j]
result = (q_s @ dtheta @ q_a.T).view(-1)
squared_projections_sum += result**2
lambda_ii_avg = squared_projections_sum / n_examples
return lambda_ii_avg
def get_ekfac_ihvp(
kfac_input_covs, kfac_grad_covs, pseudo_grads, search_grads, damping=0.001
):
"""Compute EK-FAC inverse Hessian-vector products."""
ihvp = []
for i in range(len(search_grads)):
V = search_grads[i]
stacked = t.stack(V)
# Performing eigendecompositions on the input and gradient covariance matrices
q_a, _, q_a_t = t.svd(kfac_input_covs[i])
q_s, _, q_s_t = t.svd(kfac_grad_covs[i])
lambda_ii = compute_lambda_ii(pseudo_grads[i], q_a, q_s)
ekfacDiag_damped_inv = 1.0 / (lambda_ii + damping)
ekfacDiag_damped_inv = ekfacDiag_damped_inv.reshape(
(stacked.shape[-2], stacked.shape[-1])
)
intermediate_result = t.einsum("bij,jk->bik", stacked, q_a_t)
intermediate_result = t.einsum("ji,bik->bjk", q_s, intermediate_result)
result = intermediate_result / ekfacDiag_damped_inv.unsqueeze(0)
ihvp_component = t.einsum("bij,jk->bik", result, q_a)
ihvp_component = t.einsum("ji,bik->bjk", q_s_t, ihvp_component)
# flattening the result except for the batch dimension
ihvp_component = einops.rearrange(ihvp_component, "b j k -> b (j k)")
ihvp.append(ihvp_component)
# Concatenating the results across blocks to get the final ihvp
return t.cat(ihvp, dim=-1)
def get_query_grad(model, query, mlp_blocks: List[InfluenceCalculable], device):
grads = get_grads(model, [query], mlp_blocks, device)
return t.cat([q[0].view(-1) for q in grads])
def get_influences(ihvp, query_grad):
"""
Compute influences using precomputed iHVP and query_grad
"""
return -1 * t.einsum("ij,j->i", ihvp, query_grad)
def influence(
model,
mlp_blocks: List[InfluenceCalculable],
queries,
gradient_fitting_data,
search_data,
topk,
device,
):
kfac_input_covs, kfac_grad_covs, pseudo_grads = get_ekfac_factors_and_pseudo_grads(
model, gradient_fitting_data, mlp_blocks, device
)
search_grads = get_grads(model, search_data, mlp_blocks, device)
ihvp = get_ekfac_ihvp(kfac_input_covs, kfac_grad_covs, pseudo_grads, search_grads)
all_top_training_samples = []
all_top_influences = []
for query in queries:
query_grad = get_query_grad(model, query, mlp_blocks, device)
top_influences = get_influences(ihvp, query_grad)
top_influences, top_samples = t.topk(top_influences, topk)
all_top_training_samples.append(top_samples)
all_top_influences.append(top_influences)
return all_top_training_samples, all_top_influences