forked from cohlecohle/hackathon-zinc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDNN_unite_model.py
76 lines (58 loc) · 2.14 KB
/
DNN_unite_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import keras
from keras.models import Sequential
import tensorflow as tf
def build_and_compile_model(norm):
model = keras.Sequential([
norm,
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(3)
])
model.compile(loss='mean_absolute_error',
optimizer=tf.keras.optimizers.Adam(0.001))
return model
def plot_loss(history):
plt.plot(history.history['loss'], label='loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.axis([-5, 30, 0, 50])
plt.xlabel('Epoch')
plt.ylabel('Error [MPG]')
plt.legend()
plt.grid(True)
plt.savefig('testfigure.png', dpi=100)
plt.show()
np.set_printoptions(precision=3, suppress=True)
raw_dataset = pd.read_csv('data.csv')
dataset = raw_dataset.copy()
dataset = dataset.drop(columns=['Unnamed: 0', 'DateTime'])
dataset.head()
train_dataset = dataset.sample(frac=0.8, random_state=0)
test_dataset = dataset.drop(train_dataset.index)
#sns.pairplot(train_dataset[["Sol", "CuIn", "CdIn", "ZnIn", "Temperature", "pH", "Dust"]], diag_kind='kde')
train_features = train_dataset.copy()
test_features = test_dataset.copy()
train_labels = train_features[['CuOut', 'CdOut', 'ZnOut']].copy()
test_labels = test_features[['CuOut', 'CdOut', 'ZnOut']].copy()
train_features = train_features.drop(['CuOut', 'CdOut', 'ZnOut'], axis=1)
test_features = test_features.drop(['CuOut', 'CdOut', 'ZnOut'], axis=1)
normalizer = tf.keras.layers.Normalization(axis=-1)
normalizer.adapt(np.array(train_features))
print(normalizer.mean.numpy())
first = np.array(train_features[:1])
with np.printoptions(precision=2, suppress=True):
print('First example:', first)
print()
print('Normalized:', normalizer(first).numpy())
dnn_model = build_and_compile_model(normalizer)
dnn_model.summary()
history = dnn_model.fit(
train_features,
train_labels,
validation_split=0.2,
verbose=0, epochs=25)
plot_loss(history)
print(123)