-
Notifications
You must be signed in to change notification settings - Fork 17
/
train_synth_RGB.py
410 lines (346 loc) · 17.4 KB
/
train_synth_RGB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import absolute_import
# Some basic setup:
# Setup detectron2 logger
from detectron2.utils.logger import setup_logger
setup_logger()
# import some common libraries
import torch; print(torch.__version__)
import os, json, cv2, random
import numpy as np
import time
import datetime
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultTrainer
from detectron2.data import build_detection_train_loader
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.utils.visualizer import ColorMode
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.structures import BoxMode
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.data import detection_utils as utils
from detectron2.data.datasets.coco import load_coco_json
import detectron2.data.transforms as T
import copy
from detectron2.evaluation import COCOEvaluator, inference_on_dataset, LVISEvaluator
from detectron2.data import build_detection_test_loader
from detectron2.engine import HookBase
import detectron2.utils.comm as comm
from detectron2.evaluation import inference_context
from detectron2.utils.logger import log_every_n_seconds
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.engine.hooks import PeriodicWriter
import albumentations as A
from pycocotools.coco import COCO, maskUtils
import logging
import pandas as pd
from tensorboard import version; print(version.VERSION)
from tqdm import tqdm
from itertools import chain
def test_mapper(dataset_dict):
# Implement a mapper, similar to the default DatasetMapper, but with your own customizations
# This mapper uses to power of the albumentations library to optimize DA
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
image = utils.read_image(dataset_dict["file_name"], format="BGR")
# get annotations
bboxes = [ann['bbox'] for ann in dataset_dict['annotations']]
labels = [ann['category_id'] for ann in dataset_dict['annotations']]
keypoints = np.array([ann['keypoints'] for ann in dataset_dict['annotations']]).reshape((-1, 3))
masks = [maskUtils.decode(ann['segmentation']) for ann in dataset_dict['annotations']]
# FDA things
# im_name='/home/vince/repos/coco-annotator/datasets/essai_03/image_00000_RGB.png'
# target_image = utils.read_image(im_name, format="BGR")
# Configure data augmentation -> https://albumentations.ai/docs/getting_started/transforms_and_targets/
transform = A.Compose([
A.RandomCrop(720, 720, p=0.0),
], keypoint_params=A.KeypointParams(format='xy', remove_invisible=False),
bbox_params=A.BboxParams(format='coco', label_fields=['bbox_ids'], min_visibility=0.1))
transformed = transform(image=image,
masks=masks,
bboxes=bboxes,
keypoints=keypoints,
category_id=labels,
bbox_ids=np.arange(len(bboxes)))
transformed_image = transformed["image"]
h, w, _ = transformed_image.shape
visible_ids = transformed['bbox_ids']
transformed_masks = [maskUtils.encode(np.asfortranarray(mask)) for mask in np.array(transformed["masks"])[visible_ids]]
transformed_bboxes = np.array(transformed["bboxes"])
transformed_keypoints = np.array(transformed['keypoints']).reshape((-1, 5, 3))[visible_ids] # Ideally find a way to retrieve NUM_KEYPOINTS instead of hardcoding
for keypoints in transformed_keypoints:
for keypoint in keypoints:
if keypoint[0] > w or keypoint[0] < 0 or keypoint[1] > h or keypoint[1] < 0:
keypoint[0:2] = [-0.5, -0.5]
keypoint[2] = 0
# check if horizontal flip
for keypoints in transformed_keypoints:
if keypoints[1][0] > keypoints[2][0]:
temp_kp = np.copy(keypoints[2])
keypoints[2] = keypoints[1]
keypoints[1] = temp_kp
transformed_labels = np.array(transformed['category_id'])
dataset_dict["image"] = torch.as_tensor(transformed_image.transpose(2, 0, 1).astype("float32"))
annos = [
{
'iscrowd': 0,
'bbox': transformed_bboxes[i].tolist(),
'keypoints': transformed_keypoints[i].tolist(),
'segmentation': transformed_masks[i],
'category_id': transformed_labels[i],
'bbox_mode': BoxMode.XYWH_ABS,
}
for i in range(len(transformed_bboxes))
]
dataset_dict['annotations'] = annos
instances = utils.annotations_to_instances(annos, image.shape[:2], mask_format="bitmask")
dataset_dict["instances"] = utils.filter_empty_instances(instances)
return dataset_dict
def albumentations_mapper(dataset_dict):
# Implement a mapper, similar to the default DatasetMapper, but with your own customizations
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
image = utils.read_image(dataset_dict["file_name"], format="BGR")
# get annotations
bboxes = [ann['bbox'] for ann in dataset_dict['annotations']]
labels = [ann['category_id'] for ann in dataset_dict['annotations']]
keypoints = np.array([ann['keypoints'] for ann in dataset_dict['annotations']]).reshape((-1, 3))
masks = [maskUtils.decode(ann['segmentation']) for ann in dataset_dict['annotations']]
# Configure data augmentation -> https://albumentations.ai/docs/getting_started/transforms_and_targets/
transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.RandomCrop(720, 720, p=1.0),
A.RandomBrightnessContrast(p=0.3, brightness_limit=[-0.1, 0.1], contrast_limit=[-0.1, 0.3], brightness_by_max=True),
A.GaussNoise(p=0.2, var_limit=(10.0, 50.0), mean=0, per_channel=True),
A.GlassBlur(p=0.1, sigma=0.6, max_delta=3, iterations=2, mode='fast'),
A.ISONoise(p=0.2, color_shift=(0.01, 0.05), intensity=(0.1, 0.5)),
A.HueSaturationValue(p=0.3, sat_shift_limit=0.25, hue_shift_limit=0, val_shift_limit=0),
A.MotionBlur(p=0.2, blur_limit=7),
A.Perspective(p=0.2),
], keypoint_params=A.KeypointParams(format='xy', remove_invisible=False),
bbox_params=A.BboxParams(format='coco', label_fields=['bbox_ids'], min_visibility=0.1))
transformed = transform(image=image,
masks=masks,
bboxes=bboxes,
keypoints=keypoints,
category_id=labels,
bbox_ids=np.arange(len(bboxes)))
transformed_image = transformed["image"]
h, w, _ = transformed_image.shape
visible_ids = transformed['bbox_ids']
transformed_masks = [maskUtils.encode(np.asfortranarray(mask)) for mask in np.array(transformed["masks"])[visible_ids]]
transformed_bboxes = np.array(transformed["bboxes"])
transformed_keypoints = np.array(transformed['keypoints']).reshape((-1, 5, 3))[visible_ids] # Ideally find a way to retrieve NUM_KEYPOINTS instead of hardcoding
for keypoints in transformed_keypoints:
for keypoint in keypoints:
if keypoint[0] > w or keypoint[0] < 0 or keypoint[1] > h or keypoint[1] < 0:
keypoint[0:2] = [-0.5, -0.5]
keypoint[2] = 0
# check if horizontal flip
for keypoints in transformed_keypoints:
if keypoints[1][0] > keypoints[2][0]:
temp_kp = np.copy(keypoints[2])
keypoints[2] = keypoints[1]
keypoints[1] = temp_kp
transformed_labels = np.array(transformed['category_id'])
dataset_dict["image"] = torch.as_tensor(transformed_image.transpose(2, 0, 1).astype("float32"))
annos = [
{
'iscrowd': 0,
'bbox': transformed_bboxes[i].tolist(),
'keypoints': transformed_keypoints[i].tolist(),
'segmentation': transformed_masks[i],
'category_id': transformed_labels[i],
'bbox_mode': BoxMode.XYWH_ABS,
}
for i in range(len(transformed_bboxes))
]
dataset_dict['annotations'] = annos
instances = utils.annotations_to_instances(annos, image.shape[:2], mask_format="bitmask")
dataset_dict["instances"] = utils.filter_empty_instances(instances)
return dataset_dict
# https://github.com/facebookresearch/detectron2/issues/1763
# https://gilberttanner.com/blog/detectron-2-object-detection-with-pytorch
class MyTrainer(DefaultTrainer):
@classmethod
def build_train_loader(cls, cfg):
return build_detection_train_loader(
cfg, mapper=albumentations_mapper
)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
return build_detection_test_loader(
cfg, dataset_name, mapper=test_mapper
)
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return COCOEvaluator(dataset_name, ("bbox", "segm", "keypoints"), False, output_dir=output_folder, kpt_oks_sigmas=(.25, .25, .25, .25, .25)) # ("bbox", "segm", "keypoints")
def build_hooks(self):
hooks = super(MyTrainer, self).build_hooks()
cfg = self.cfg
if len(cfg.DATASETS.TEST) > 0:
loss_eval_hook = LossEvalHook(
cfg.TEST.EVAL_PERIOD,
self.model,
MyTrainer.build_test_loader(cfg, cfg.DATASETS.TEST[0]),
)
hooks.insert(-1, loss_eval_hook)
return hooks
class LossEvalHook(HookBase):
def __init__(self, eval_period, model, data_loader):
self._model = model
self._period = eval_period
self._data_loader = data_loader
def _do_loss_eval(self):
# Copying inference_on_dataset from evaluator.py
total = len(self._data_loader)
num_warmup = min(5, total - 1)
start_time = time.perf_counter()
total_compute_time = 0
losses = []
for idx, inputs in enumerate(self._data_loader):
if idx == num_warmup:
start_time = time.perf_counter()
total_compute_time = 0
start_compute_time = time.perf_counter()
if torch.cuda.is_available():
torch.cuda.synchronize()
total_compute_time += time.perf_counter() - start_compute_time
iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup)
seconds_per_img = total_compute_time / iters_after_start
if idx >= num_warmup * 2 or seconds_per_img > 5:
total_seconds_per_img = (time.perf_counter() - start_time) / iters_after_start
eta = datetime.timedelta(seconds=int(total_seconds_per_img * (total - idx - 1)))
log_every_n_seconds(
logging.INFO,
"Loss on Validation done {}/{}. {:.4f} s / img. ETA={}".format(
idx + 1, total, seconds_per_img, str(eta)
),
n=5,
)
loss_batch = self._get_loss(inputs)
losses.append(loss_batch)
mean_loss = np.mean(losses)
# self.trainer.storage.put_scalar('validation_loss', mean_loss)
comm.synchronize()
# return losses
return mean_loss
def _get_loss(self, data):
# How loss is calculated on train_loop
metrics_dict = self._model(data)
metrics_dict = {
k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v)
for k, v in metrics_dict.items()
}
total_losses_reduced = sum(loss for loss in metrics_dict.values())
return total_losses_reduced
def after_step(self):
next_iter = int(self.trainer.iter) + 1
is_final = next_iter == self.trainer.max_iter
if is_final or (self._period > 0 and next_iter % self._period == 0):
mean_loss = self._do_loss_eval()
self.trainer.storage.put_scalars(validation_loss=mean_loss)
print("validation do loss eval", mean_loss)
else:
pass
# name of the .pth file
model_name = 'your-coco-pretrained-weights.pth'
img_dir = 'path/to/synthtree/images'
if __name__ == "__main__":
torch.cuda.is_available()
coco_train_filename='./output/train_RGB.json'
coco_val_filename='./output/val_RGB.json'
coco_test_filename='./output/test_RGB.json'
train_dataset_name="tree_train_set"
val_dataset_name="tree_val_set"
test_dataset_name="tree_test_set"
logger = setup_logger(name=__name__)
dicts_train = load_coco_json(coco_train_filename, img_dir, train_dataset_name)
logger.info("Done loading {} samples.".format(len(dicts_train)))
dicts_val = load_coco_json(coco_val_filename, img_dir, val_dataset_name)
logger.info("Done loading {} samples.".format(len(dicts_val)))
dicts_test = load_coco_json(coco_test_filename, img_dir, test_dataset_name)
logger.info("Done loading {} samples.".format(len(dicts_test)))
for d in ["train_set"]:
DatasetCatalog.register("tree_" + d, lambda d=d: dicts_train)
MetadataCatalog.get("tree_" + d).set(thing_classes=["tree"], keypoint_names=["kpCP", "kpL", "kpR", "ax1", "ax2"], keypoint_flip_map=[])
for d in ["val_set"]:
DatasetCatalog.register("tree_" + d, lambda d=d: dicts_val)
MetadataCatalog.get("tree_" + d).set(thing_classes=["tree"], keypoint_names=["kpCP", "kpL", "kpR", "ax1", "ax2"], keypoint_flip_map=[])
for d in ["test_set"]:
DatasetCatalog.register("tree_" + d, lambda d=d: dicts_test)
MetadataCatalog.get("tree_" + d).set(thing_classes=["tree"], keypoint_names=["kpCP", "kpL", "kpR", "ax1", "ax2"], keypoint_flip_map=[])
cfg = get_cfg()
# cfg = LazyConfig.load(model_zoo.get_config_file("new_baselines/mask_rcnn_R_101_FPN_400ep_LSJ.py"))
# cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml"))
# cfg.merge_from_file(model_zoo.get_config_file("COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml"))
cfg.merge_from_file(model_zoo.get_config_file("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("tree_train_set",)
cfg.DATASETS.VAL = ("tree_val_set",)
cfg.DATASETS.TEST = ("tree_test_set",)
cfg.DATALOADER.NUM_WORKERS = 8
# better to load the weigths from a COCO model rather than a COCO-keypoint model
# cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, model_name)
cfg.INPUT.MASK_FORMAT = "bitmask"
cfg.SOLVER.IMS_PER_BATCH = 4 # 8
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.SOLVER.GAMMA = 0.1
cfg.SOLVER.STEPS = [10000, 30000]
cfg.SOLVER.BASE_LR = 0.002 # pick a good LR
cfg.SOLVER.MAX_ITER = 60000
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 256 # faster (default: 512)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (tree)
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS = 5
cfg.TEST.KEYPOINT_OKS_SIGMAS = (.25, .25, .25, .25, .25)
cfg.MODEL.BACKBONE.FREEZE_AT = 2
cfg.SOLVER.CHECKPOINT_PERIOD = 5000
cfg.TEST.EVAL_PERIOD = 2000 # only uncomment when evaluating during training
cfg.INPUT.MIN_SIZE_TEST = 0 # no resize at test time
cfg.CUDNN_BENCHMARK = True
cfg.MODEL.MASK_ON = True
cfg.MODEL.KEYPOINT_ON = True
cfg.OUTPUT_DIR = './output'
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = MyTrainer(cfg)
trainer.resume_or_load(resume=True)
trainer.train()
metrics_df = pd.read_json(cfg.OUTPUT_DIR + "/metrics.json", orient="records", lines=True)
mdf = metrics_df.sort_values("iteration")
# print(mdf)
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.01
# cfg.INPUT.MIN_SIZE_TEST = 0 # no resize at test time
predictor_synth = DefaultPredictor(cfg)
dir_fold_test = cfg.OUTPUT_DIR + "/eval_0"
os.makedirs(dir_fold_test, exist_ok=True)
evaluator = COCOEvaluator("tree_test_set", cfg, False, output_dir=dir_fold_test)
val_loader = build_detection_test_loader(cfg, "tree_test_set")
print(inference_on_dataset(predictor_synth.model, val_loader, evaluator))
# visualize detections
dicts = list(chain.from_iterable([DatasetCatalog.get(k) for k in cfg.DATASETS.TEST]))
random.shuffle(dicts)
tree_metadata = MetadataCatalog.get("tree_val_set")
for dic in tqdm(dicts):
img = utils.read_image(dic["file_name"], "BGR")
outputs_synth = predictor_synth(img)
v_synth = Visualizer(img[:, :, ::-1],
metadata=tree_metadata,
scale=1,
instance_mode = ColorMode.IMAGE # remove color from image, better see instances
)
# remove keypoints
# outputs_synth["instances"].remove('pred_keypoints')
out_synth = v_synth.draw_instance_predictions(outputs_synth["instances"].to("cpu"))
cv2.imshow('predictions', out_synth.get_image()[:, :, ::-1])
# cv2.imshow('predictions', img)
k = cv2.waitKey(0)
# exit loop if esc is pressed
if k == 27:
cv2.destroyAllWindows()
break
cv2.destroyAllWindows()