-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathdeeplab_v3_plus_test.py
74 lines (57 loc) · 2.6 KB
/
deeplab_v3_plus_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for DeepLab model and some helper functions."""
import tensorflow as tf
from deeplab_v3_plus import DeeplabV3Plus
class DeeplabModelTest(tf.test.TestCase):
def testForwardpassDeepLabv3plus(self):
input_size = [33, 33]
model = DeeplabV3Plus(num_classes=3,
model_input_size=input_size,
output_stride=16,
add_image_level_feature=True,
aspp_with_batch_norm=True)
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
inputs = tf.random_uniform(
(1, input_size[0], input_size[1], 3))
logits = model.forward(inputs)
# for t in logits.graph.get_operations():
# print(t.name)
sess.run(tf.global_variables_initializer())
outputs = sess.run(logits)
self.assertTrue(outputs.any())
def testForwardpassDeepLabv3plusMobilenetV3(self):
input_size = [512, 512]
model = DeeplabV3Plus(num_classes=3,
backbone='MobilenetV3',
model_input_size=input_size,
output_stride=16,
add_image_level_feature=True,
aspp_with_batch_norm=True)
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
inputs = tf.random_uniform(
(1, input_size[0], input_size[1], 3))
logits = model.forward(inputs)
# for t in logits.graph.get_operations():
# print(t.name)
sess.run(tf.global_variables_initializer())
outputs = sess.run(logits)
self.assertTrue(outputs.any())
if __name__ == '__main__':
tf.test.main()