Skip to content

Latest commit

 

History

History
93 lines (81 loc) · 4.63 KB

README.md

File metadata and controls

93 lines (81 loc) · 4.63 KB

Mobile Deeplab-V3+ model for Segmentation

This project is used for deploying people segmentation model to mobile device and learning. The people segmentation android project is here. The model is another Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation (Deeplab-V3+) implementation base on MobilenetV2 / MobilenetV3 on TensorFlow.

This project uses tf.estimator API to do training, and many code come from TensorFlow model,

Segmentation result

Dataset

This project supports 2 dataset.

  1. PASCAL VOC2012
  2. Supervisely People dataset.

Environment

  • TensorFlow v1.12.0
    1. No module named keras_applications: solution
    2. AttributeError: 'Estimator' object has no attribute '_distribution': solution.

Usage

  1. Prepare pretrained MobilenetV2 model(optional)
    bash prepare.sh
  2. Train
    • train on pascal voc 2012 dataset
    bash train_pascal_voc2012.sh
    # Tensorboard
    tensorboard --logdir=datasets/pascal_voc2012/exp/deeplab-v3-plus/train
    • train on people segmentation dataset
    mv people_segmentation.tar.gz datasets
    bash train_people_seg.sh
    # Tensorboard
    tensorboard --logdir=datasets/people_segmentation/exp/deeplab-v3-plus/train
  3. Export and Freeze model
    • pascal voc 2012 dataset
    bash export_pascal_voc2012.sh
    # Output
    # 1. TensorFlow Serving: datasets/pascal_voc2012/exp/deeplab-v3-plus/export/
    # 2. Frozen model: datasets/pascal_voc2012/exp/deeplab-v3-plus/export/frozen_model.pb
    • people segmentation dataset
    bash export_people_seg.sh
    # Output
    # 1. TensorFlow Serving: datasets/people_segmentation/exp/deeplab-v3-plus/export/
    # 2. Frozen model: datasets/people_segmentation/exp/deeplab-v3-plus/export/frozen_model.pb

Explanation

You could modify the parameters and add new backbones network easily.

  1. Use MobilenetV3 backbone: Change parameter from --backbone="MobielentV2" to --backbone="MobilenetV3"
  2. quant_friendly: Remove BN layer after Depthwise Convolution, replace relu6 with relu, method from A Quantization-Friendly Separable Convolution for MobileNets.

Result

  1. Pascal VOC2012
Backbone Pretrained backbone Augmented Input Size ASPP Decoder mIOU(%)
MobilenetV2 YES YES 513x513 NO NO 70.51
  • Environment: base_lr=0.007, training_steps=30000, learning_policy=poly, num_gpu=1.
  1. People Segmentation Dataset
Backbone Input Size Augmented ASPP Decoder Quant-Friendly Steps mIOU(%) Pretrained Model
MobilenetV2 256x256 YES NO YES YES 150000 81.68 model
MobilenetV2 256x256 YES YES YES YES 150000 83.33 model
MobilenetV3 256x256 YES No YES YES 150000 81.86 model
MobilenetV2 513x513 YES No YES YES 150000 89.55 model
  • Environment: base_lr=0.05, training_steps=150000, learning_policy=poly, num_gpu=1.
  • Augmented: use augmented dataset.

TODO

References

  1. https://github.com/tensorflow/models/tree/master/research/deeplab
  2. https://github.com/rishizek/tensorflow-deeplab-v3-plus
  3. https://github.com/kuan-wang/pytorch-mobilenet-v3/blob/master/mobilenetv3.py
  4. https://github.com/DrSleep/tensorflow-deeplab-resnet