-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
144 lines (130 loc) · 6.24 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Code based on the Pyramid Vision Transformer
# https://github.com/whai362/PVT
# Licensed under the Apache License, Version 2.0
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import trunc_normal_
from pvt_local_final import PyramidVisionTransformer
# from pvt_local_laststage import PyramidVisionTransformer
# from pvt_local_2 import PyramidVisionTransformer
# from pvt import PyramidVisionTransformer
from block import FuseBlock
from pytorch_pretrained_bert.modeling import BertModel
class LORA(nn.Module):
def __init__(self, args):
super(LORA, self).__init__()
num_classes=args.nb_classes
self.tunebert = args.tunebert
self.bert_dim = args.bert_dim
self.hidden_dim = args.hidden_dim
## Vision model--PVT small: https://github.com/whai362/PVT
self.vision_model = PyramidVisionTransformer(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
alpha = args.alpha,
locals= args.locals)
## Text model
self.text_model = BertModel.from_pretrained(args.bert_model)
## Visual-Language Fusion model
# self.cls_token = nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
token_nums = [64, 32, 20, 8]
local_num = 8 # must have last stage
for i in range(4):
if args.locals[i]:
local_num = local_num+token_nums[i]
self.pos_embed = nn.Parameter(torch.zeros(1, 1+sum(args.locals)+local_num*args.alpha+30, self.hidden_dim))
# alpha=8, locals:
# [1, 1, 1, 0]: [1, 996, 512]
# [0, 1, 1, 0]: [1, 483, 512]
# [0, 0, 1, 0]: [1, 226, 512]
# [0, 0, 0, 0]: [1, 65, 512]
self.v_proj = nn.Linear(self.vision_model.embed_dims[3], self.hidden_dim)
self.l_proj = nn.Linear(self.bert_dim, self.hidden_dim)
self.fusion_model = FuseBlock(args)
## Prediction Head
self.head = nn.Linear(self.hidden_dim, num_classes) if num_classes > 0 else nn.Identity()
self._init_weights()
def _init_weights(self):
## Fusion
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.normal_(self.v_proj.bias, std=1e-6)
nn.init.xavier_uniform_(self.l_proj.weight)
nn.init.normal_(self.l_proj.bias, std=1e-6)
trunc_normal_(self.pos_embed, std=.02)
# trunc_normal_(self.cls_token, std=.02)
# Head
nn.init.xavier_uniform_(self.head.weight)
nn.init.normal_(self.head.bias, std=1e-6)
def forward(self, image, word_id, word_mask):
B = image.shape[0]
## Vision features
fv = self.vision_model(image)
## Language features
all_encoder_layers = self.text_model(word_id, \
token_type_ids=None, attention_mask=word_mask)
fl = (all_encoder_layers[-1] + all_encoder_layers[-2]\
+ all_encoder_layers[-3] + all_encoder_layers[-4])/4 # [bs, 30, 768]
if not self.tunebert:
fl = fl.detach()
## Fusion
# x = torch.cat([self.cls_token.expand([B, -1, -1]), self.v_proj(fv), self.l_proj(fl)], dim=1)
x = torch.cat([self.v_proj(fv), self.l_proj(fl)], dim=1)
x = x+self.pos_embed
x = self.fusion_model(x)
## Prediction
x = self.head(x)
return x
if __name__=='__main__':
parser = argparse.ArgumentParser('LORA training and evaluation script', add_help=False)
parser.add_argument('--fp32-resume', action='store_true', default=False)
parser.add_argument('--batch-size', default=32, type=int)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--config', default='configs/pvt/pvt_small.py', type=str, help='config')
# Vision Model parameters
parser.add_argument('--model', default='pvt_small', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=448, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
# Language Model parameters
parser.add_argument('--tunebert', default=False, type=bool)
parser.add_argument('--bert-dim', default=768, type=int)
parser.add_argument('--bert-model', default='bert-base-uncased', type=str)
# Fusion Model parameters
parser.add_argument('--hidden-dim', default=768, type=int)
parser.add_argument('--fuse-mlp-dim', default=3072, type=int)
parser.add_argument('--fuse-dropout-rate', default=0.1, type=float)
parser.add_argument('--fuse-num-heads', default=12, type=int)
parser.add_argument('--fuse-attention-dropout-rate', default=0.0, type=float)
parser.add_argument('--alpha', default=8, type=int, help='alpha')
parser.add_argument('--locals', default=[1, 1, 1, 0], type=list, help='locals')
args = parser.parse_args()
args.nb_classes = 7 # SER 7 classes
model = LORA(args).cuda()
## Load checkpoint
checkpoint = torch.load('weights/pvt_small.pth', map_location='cpu')
if 'model' in checkpoint:
checkpoint_model = checkpoint['model']
else:
checkpoint_model = checkpoint
for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
if k in checkpoint_model:
del checkpoint_model[k]
model.vision_model.load_state_dict(checkpoint_model, strict=False)
x = torch.randn([1, 3, 448, 448]).cuda()
y = model(x, 0, 0)
print(y.shape)