-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblock.py
107 lines (86 loc) · 3.78 KB
/
block.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import copy
import logging
import math
from os.path import join as pjoin
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish}
class Attention(nn.Module):
def __init__(self, config):
super(Attention, self).__init__()
self.num_attention_heads = config.fuse_num_heads
self.attention_head_size = int(config.hidden_dim / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = Linear(config.hidden_dim, self.all_head_size)
self.key = Linear(config.hidden_dim, self.all_head_size)
self.value = Linear(config.hidden_dim, self.all_head_size)
self.out = Linear(config.hidden_dim, config.hidden_dim)
self.attn_dropout = Dropout(config.fuse_attention_dropout_rate)
self.proj_dropout = Dropout(config.fuse_attention_dropout_rate)
self.softmax = Softmax(dim=-1)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer) # Multi-head:12*64=768
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
attention_probs = self.softmax(attention_scores)
# weights = attention_probs
attention_probs = self.attn_dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
attention_output = self.out(context_layer)
attention_output = self.proj_dropout(attention_output)
return attention_output #, weights
class Mlp(nn.Module):
def __init__(self, config):
super(Mlp, self).__init__()
self.fc1 = Linear(config.hidden_dim, config.fuse_mlp_dim)
self.fc2 = Linear(config.fuse_mlp_dim, config.hidden_dim)
self.act_fn = ACT2FN["gelu"]
self.dropout = Dropout(config.fuse_dropout_rate)
self._init_weights()
def _init_weights(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.normal_(self.fc1.bias, std=1e-6)
nn.init.normal_(self.fc2.bias, std=1e-6)
def forward(self, x):
x = self.fc1(x)
x = self.act_fn(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class FuseBlock(nn.Module):
def __init__(self, config):
super(FuseBlock, self).__init__()
self.hidden_size = config.hidden_dim
self.attention_norm = LayerNorm(config.hidden_dim, eps=1e-6)
self.ffn_norm = LayerNorm(config.hidden_dim, eps=1e-6)
self.ffn = Mlp(config)
self.attn = Attention(config)
def forward(self, x):
h = x
x = self.attention_norm(x)
x = self.attn(x)
x = x + h
h = x
x = self.ffn_norm(x)
x = self.ffn(x)
x = x + h
return x[:,0]