-
Notifications
You must be signed in to change notification settings - Fork 0
/
Point.cpp
1079 lines (939 loc) · 30.4 KB
/
Point.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*! \file Point.cpp
* \brief The implementation of Point. (a simple point class)
* \author Christos Nitsas
* \date 2012
*
* Won't `include` Point.h. In fact Point.h will `include`
* Point.cpp because we want a header-only code base.
*/
#include <assert.h>
#include <string>
#include <sstream>
#include <vector>
#include <cmath>
#include <iomanip>
#include <ios>
#include <iostream>
/*!
* \weakgroup ParetoApproximator Everything needed for the Pareto set approximation algorithms.
* @{
*/
//! The namespace containing everything needed for the Pareto set approximation algorithms.
namespace pareto_approximator {
//! The empty constructor. Creates a null Point instance.
Point::Point() : isNull_(true) { }
//! An 1-dimensional Point constructor.
Point::Point(int x) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
}
//! An 1-dimensional Point constructor.
Point::Point(double x) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
}
//! A 2-dimensional Point constructor.
Point::Point(int x, int y) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
coordinates_.push_back(y);
}
//! A 2-dimensional Point constructor.
Point::Point(unsigned int x, unsigned int y) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
coordinates_.push_back(y);
}
//! A 2-dimensional Point constructor.
Point::Point(double x, double y) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
coordinates_.push_back(y);
}
//! A 3-dimensional Point constructor.
Point::Point(int x, int y, int z) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
coordinates_.push_back(y);
coordinates_.push_back(z);
}
//! A 3-dimensional Point constructor.
Point::Point(unsigned int x, unsigned int y, unsigned int z) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
coordinates_.push_back(y);
coordinates_.push_back(z);
}
//! A 3-dimensional Point constructor.
Point::Point(double x, double y, double z) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
coordinates_.push_back(y);
coordinates_.push_back(z);
}
//! A 4-dimensional Point constructor.
Point::Point(int x, int y, int z, int w) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
coordinates_.push_back(y);
coordinates_.push_back(z);
coordinates_.push_back(w);
}
//! A 4-dimensional Point constructor.
Point::Point(unsigned int x, unsigned int y,
unsigned int z, unsigned int w) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
coordinates_.push_back(y);
coordinates_.push_back(z);
coordinates_.push_back(w);
}
//! A 4-dimensional Point constructor.
Point::Point(double x, double y, double z, double w) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.push_back(x);
coordinates_.push_back(y);
coordinates_.push_back(z);
coordinates_.push_back(w);
}
//! An n-dimensional Point constructor.
/*!
* \param first Iterator to the initial position in a std::vector<double>.
* \param last Iterator to the final position in a std::vector<double>.
*
* The range used is [first, last), which includes all the elements between
* first and last, including the element pointed by first but not the
* element pointed by last.
*
* The resulting point's coordinates will be doubles, not ints.
*/
Point::Point(std::vector<int>::const_iterator first,
std::vector<int>::const_iterator last) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.assign(first, last);
}
//! An n-dimensional Point constructor.
/*!
* \param first Iterator to the initial position in a
* std::vector<unsigned int>.
* \param last Iterator to the final position in a
* std::vector<unsigned int>.
*
* The range used is [first, last), which includes all the elements
* between first and last, including the element pointed by first but
* not the element pointed by last.
*
* The resulting point's coordinates will be doubles, not ints.
*
* \sa Point
*/
Point::Point(std::vector<unsigned int>::const_iterator first,
std::vector<unsigned int>::const_iterator last)
{
assert(coordinates_.size() == 0);
coordinates_.assign(first, last);
}
//! An n-dimensional Point constructor.
/*!
* \param first Iterator to the initial position in a std::vector<double>.
* \param last Iterator to the final position in a std::vector<double>.
*
* The range used is [first, last), which includes all the elements between
* first and last, including the element pointed by first but not the
* element pointed by last.
*/
Point::Point(std::vector<double>::const_iterator first,
std::vector<double>::const_iterator last) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.assign(first, last);
}
//! An n-dimensional Point constructor.
/*!
* \param first Iterator (pointer) to the initial position in an array of
* double.
* \param last Iterator (pointer) to the final position in an array of
* double. (the position just beyond the last element we want)
*
* The range used is [first, last), which includes all the elements between
* first and last, including the element pointed by first but not the
* element pointed by last.
*
* The resulting point's coordinates will be doubles, not ints.
*/
Point::Point(int* first, int* last) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.assign(first, last);
}
//! An n-dimensional Point constructor.
/*!
* \param first Iterator (pointer) to the initial position in an array of
* double.
* \param last Iterator (pointer) to the final position in an array of
* double. (the position just beyond the last element we want)
*
* The range used is [first, last), which includes all the elements between
* first and last, including the element pointed by first but not the
* element pointed by last.
*/
Point::Point(double* first, double* last) : isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.assign(first, last);
}
//! An n-dimensional Point constructor.
/*!
* \param first Iterator to the initial position in an armadillo column
* vector of double (arma::vec).
* \param last Iterator to the final position in an armadillo column
* vector of double (arma::vec). (the position just beyond
* the last element we want)
*
* The range used is [first, last), which includes all the elements
* between first and last, including the element pointed by first but
* not the element pointed by last.
*
* \sa Point
*/
Point::Point(arma::vec::const_iterator first, arma::vec::const_iterator last)
: isNull_(false)
{
assert(coordinates_.size() == 0);
coordinates_.assign(first, last);
}
//! A simple (and empty) destructor.
Point::~Point() { }
//! Check if the Point instance is null. (i.e. isNull_ == true)
/*!
* \return true if the Point instance is null; false otherwise
*
* \sa Point
*/
bool
Point::isNull() const
{
return isNull_;
}
//! Get a Point instance's dimension. (1D, 2D or 3D point)
/*!
* \return 1, 2 or 3 for 1-dimensional, 2-dimensional or 3-dimensional
* Point instances respectively.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
*
* \sa Point
*/
unsigned int
Point::dimension() const
{
if (isNull())
throw exception_classes::NullObjectException();
// else
return coordinates_.size();
}
//! Check if the Point's coordinates are all zero.
/*!
* \return true if all the Point's coordinates are zero; false otherwise.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
*
* \sa Point
*/
bool
Point::isZero() const
{
if (isNull())
throw exception_classes::NullObjectException();
// else
assert(dimension() > 0);
std::vector<double>::const_iterator it;
for (it = coordinates_.begin(); it != coordinates_.end(); ++it)
if (*it != 0.0)
return false;
return true;
}
/*!
* \brief Check if the Point is positive (i.e. all coordinates greater
* than zero).
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
*
* \sa Point
*/
bool
Point::isPositive() const
{
if (isNull())
throw exception_classes::NullObjectException();
// else
assert(dimension() > 0);
std::vector<double>::const_iterator it;
for (it = coordinates_.begin(); it != coordinates_.end(); ++it)
if (*it < 0.0)
return false;
return true;
}
/*!
* \brief Check if the Point is strictly positive (i.e. all coordinates
* strictly greater than zero).
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
*
* \sa Point
*/
bool
Point::isStrictlyPositive() const
{
if (isNull())
throw exception_classes::NullObjectException();
// else
assert(dimension() > 0);
std::vector<double>::const_iterator it;
for (it = coordinates_.begin(); it != coordinates_.end(); ++it)
if (*it <= 0.0)
return false;
return true;
}
//! The Point access coordinate operator.
/*!
* \param pos The position (coordinate) to access.
* (0 <= pos < dimension())
* \return The Point's "pos" coordinate.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
* - May throw a NonExistentCoordinateException exception if the
* requested coordinate does not exist. ("pos" is greater than or
* equal to dimension())
*
* \sa Point, dimension(), operator==(), operator!=(), operator<(),
* std::ostream & operator<<(std::ostream &, Point &) and
* std::istream & operator>>(std::istream &, Point &)
*/
double
Point::operator[] (unsigned int pos) const
{
if (isNull())
throw exception_classes::NullObjectException();
// else
if (pos >= dimension())
throw exception_classes::NonExistentCoordinateException();
else
return coordinates_[pos];
}
//! The Point equality operator.
/*!
* \param p A Point instance we want to compare with the current instance.
* \return true if the Points are equal, false otherwise.
*
* Checks if both Point instances are of the same dimension and have
* equal coordinates. Returns true if all the above hold, false
* otherwise.
*
* \sa Point, operator!=(), operator<(), operator[](),
* std::ostream & operator<<(std::ostream &, Point &) and
* std::istream & operator>>(std::istream &, Point &)
*/
bool
Point::operator== (const Point & p) const
{
if (isNull() and p.isNull())
return true;
else if (isNull() or p.isNull())
return false;
// else
// both points should be non-null now
assert(not (isNull() or p.isNull()));
if (dimension() != p.dimension())
return false;
for (unsigned int i=0; i<dimension(); ++i)
if (coordinates_[i] != p[i])
return false;
return true;
}
//! The Point inequality operator.
/*!
* \param p A Point instance we want to compare with the current instance.
* \return true if the Points are not equal, false otherwise.
*
* Checks if the two Point instances are of different dimensions or differ
* in at least one of their coordinates. Returns true if at least one of
* the above holds, false otherwise.
*
* \sa Point, operator==(), operator<(), operator[](),
* std::ostream & operator<<(std::ostream &, Point &) and
* std::istream & operator>>(std::istream &, Point &)
*/
bool
Point::operator!= (const Point & p) const
{
if (isNull() and p.isNull())
return false;
else if (isNull() or p.isNull())
return true;
// else
// both points should be non-null now
assert(not (isNull() or p.isNull()));
if (dimension() != p.dimension())
return true;
for (unsigned int i=0; i<dimension(); ++i)
if (coordinates_[i] != p[i])
return true;
return false;
}
//! The Point less-than operator.
/*!
* \param p A Point instance we want to compare with the current instance.
* \return true if the Point instance on the left of the operator is
* lexicographically smaller than p, false otherwise.
*
* Compare the current Point instance with the given instance (p)
* lexicographically. A point p1 is lexicographically smaller than a
* point p2 if \f$ p1_{q} < p2_{q} \f$ where
* \f$ q = \min{k : p1_{k} \ne p2_k} \f$.
*
* Possible exceptions:
* - May throw a NullObjectException exception if either instance is null.
* - May throw a DifferentDimensionsException exception if the two Point
* instances are of different dimensions (can't be compared).
*
* \sa Point, operator==(), operator!=(), operator[](),
* std::ostream & operator<<(std::ostream &, Point &) and
* std::istream & operator>>(std::istream &, Point &)
*/
bool
Point::operator< (const Point & p) const
{
if (isNull() or p.isNull())
throw exception_classes::NullObjectException();
// else
if (dimension() != p.dimension())
throw exception_classes::DifferentDimensionsException();
// else
for (unsigned int i=0; i<dimension(); ++i) {
if (coordinates_[i] < p[i])
return true;
else if (coordinates_[i] > p[i])
return false;
else
continue;
}
return false;
}
//! The Point plus operator.
/*!
* \param p A Point instance.
* \return A new Point instance, having the same dimensions as the
* current instance and p.
*
* The new point's i'th coordinate (for all \f$ 1 \le i \le dimension()\f$)
* will be the sum of the i'th coordinate of p and the i'th coordinate
* of the current instance.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
* - May throw a DifferentDimensionsException exception if the two Point
* instances are of different dimensions (can't be added).
*
* \sa Point
*/
Point
Point::operator+ (const Point & p) const
{
if (isNull() or p.isNull())
throw exception_classes::NullObjectException();
// else
if (dimension() != p.dimension())
throw exception_classes::DifferentDimensionsException();
// else
std::vector<double> newCoords(dimension());
for (unsigned int i = 0; i < dimension(); ++i)
newCoords[i] = coordinates_[i] + p[i];
return Point(newCoords.begin(), newCoords.end());
}
//! The Point minus operator.
/*!
* \param p A Point instance.
* \return A new Point instance, having the same dimensions as the
* current instance and p.
*
* The new point's i'th coordinate (for all \f$ 1 \le i \le dimension()\f$)
* will be the this instance's i'th coordinate minus p's i'th coordinate.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
* - May throw a DifferentDimensionsException exception if the two Point
* instances are of different dimensions (can't be added).
*
* \sa Point
*/
Point
Point::operator- (const Point & p) const
{
if (isNull() or p.isNull())
throw exception_classes::NullObjectException();
// else
if (dimension() != p.dimension())
throw exception_classes::DifferentDimensionsException();
// else
std::vector<double> newCoords(dimension());
for (unsigned int i = 0; i < dimension(); ++i)
newCoords[i] = coordinates_[i] - p[i];
return Point(newCoords.begin(), newCoords.end());
}
//! Return the Point instance as a string.
/*!
* \param rawCoordinates If true, output the coordinates seperated
* by spaces; otherwise output the coordinates
* separated by ", ", inside parentheses.
*
* Makes a string with the Point instance's coordinates.
* - If `rawCoordinates==true` the result will be the point's
* coordinates separated by spaces.
* - If `rawCoordinates==false` the result will be the point's
* coordinates inside parentheses, separated by ", ".
*
* Examples for rawCoordinates == true:
* - 1.0 4.27 0.883
* - 3.0
* - 5 1.99204e+09
* - <-- dimensionless point (no spaces)
* - <-- null point (no spaces)
* - etc
*
* Examples for rawCoordinates == false:
* - (1.0, 4.27, 0.883)
* - (3.0)
* - (5, 1.99204e+09)
* - () <-- dimensionless point
* - () <-- null point
* - etc
*
* /sa Point and std::ostream & operator<<(std::ostream &, const Point &)
*/
std::string
Point::str(bool rawCoordinates) const
{
std::string separator, beginning, end;
if (not rawCoordinates) {
// rawCoordinates == false
separator = ", ";
beginning = "(";
end = ")";
}
else {
// rawCoordinates == true
separator = " ";
beginning = "";
end = "";
}
if ( isNull() or (dimension() == 0) ) {
std::stringstream ss;
ss << beginning << end;
return ss.str();
}
else {
std::stringstream ss;
if (rawCoordinates) {
// coordinates in scientific notation, with 13 digits after the dot
ss.precision(20);
ss << std::scientific;
}
ss << beginning << coordinates_[0];
for (unsigned int i=1; i<dimension(); ++i)
ss << separator << coordinates_[i];
ss << end;
return ss.str();
}
}
/*!
* \brief Return the point's coordinates as an arma::vec (armadillo
* vector).
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
*
* \sa Point
*/
arma::vec
Point::toVec() const
{
if (isNull())
throw exception_classes::NullObjectException();
// else
return arma::vec(coordinates_);
}
/*!
* \brief Return the point's coordinates as an arma::rowvec (armadillo
* row vector).
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
*
* \sa Point
*/
arma::rowvec
Point::toRowVec() const
{
if (isNull())
throw exception_classes::NullObjectException();
// else
return arma::rowvec(coordinates_);
}
//! Return the distance from the current to the given Point instance.
/*!
* \param q A Point instance.
* \return The distance from the current Point instance (*this) to
* the given Point instance.
*
* There are different possible distance metrics we could use (e.g.
* ratio distance, Euclidean distance, additive distance etc.).
*
* Currently using the additive distance metric.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
* - May throw a DifferentDimensionsException exception if the two
* Point instances are of different dimensions (can't be compared).
* - May throw a NotStrictlyPositivePointException exception if either the
* current instance or the given point is not strictly positive.
*
* \sa Point, Point::additiveDistance(), Point::euclideanDistance(),
* Point::ratioDistance() and Point::dominates()
*/
double
Point::distance(const Point & q) const
{
return additiveDistance(q);
}
/*!
* \brief Return the Euclidean distance from the current to the given
* Point instance.
*
* The formula for the Euclidean distance between two d-dimensional
* points p and q is:
* \f$ ED(p, q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + ... +
* (p_d - q_d)^2} \f$
*
* In contrast to ratioDistance(), euclideanDistance() permits points
* with negative coordinates.
*
* \sa Point, Point::distance() and Point::dominates()
*/
double
Point::euclideanDistance(const Point & q) const
{
if (isNull() or q.isNull())
throw exception_classes::NullObjectException();
if (dimension() != q.dimension())
throw exception_classes::DifferentDimensionsException();
// else
double sumOfSquaredDifferences = 0.0;
for (unsigned int i=0; i!=dimension(); ++i)
sumOfSquaredDifferences += std::pow((coordinates_[i] - q[i]), 2);
return std::sqrt(sumOfSquaredDifferences);
}
//! Return the ratio distance from the current to the given Point instance.
/*!
* \param q A Point instance.
* \return The ratio distance from the current Point instance (*this)
* to the given Point instance.
*
* We define the ratio distance from point p to q as:
* \f$ RD(p, q) = \max\{ \max_{i}\{ q_{i}/p{i} - 1 \}, 0 \} \f$.
*
* Intuitively, it is the minimum value of \f$ \epsilon \ge 0 \f$ such
* that q \f$\epsilon\f$ -dominates (\f$\epsilon\f$ -covers) p in the
* multiplicative sense.
*
* The concept of ratio distance breaks down if one (or both) of the
* two points is not strictly positive. A point p is strictly positive
* iff \f$ p_{i} > 0.0 \f$ holds for all i, i.e. every coordinate is
* strictly greater than zero.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
* - May throw a DifferentDimensionsException exception if the two
* Point instances are of different dimensions (can't be compared).
* - May throw a NotStrictlyPositivePointException exception if either the
* current instance or the given point is not strictly positive.
*
* \sa Point, Point::distance() and Point::dominates()
*/
double
Point::ratioDistance(const Point & q) const
{
if (isNull() or q.isNull())
throw exception_classes::NullObjectException();
if (dimension() != q.dimension())
throw exception_classes::DifferentDimensionsException();
if (not isStrictlyPositive() or not q.isStrictlyPositive())
throw exception_classes::NotStrictlyPositivePointException();
// else
double max = 0.0;
for (unsigned int i=0; i<dimension(); ++i) {
double r = (q[i] - coordinates_[i]) / coordinates_[i];
if (r > max)
max = r;
}
return max;
}
/*!
* \brief Computes the minimum value of \f$\epsilon\f$ such that q
* \f$\epsilon\f$ -dominates the current instance in the additive
* sense.
*
* We say that a point p is \f$\epsilon\f$ -dominated (\f$\epsilon\f$
* -covered) by a point q in the additive sense if:
* \f$ q_i \le p_i + \epsilon \f$ for all i.
*
* In other words, the additive distance from a point p to a point q
* is defined as:
* \f$ AD(p, q) = \max\{ \max_{i}\{(q_{i} - p_{i})\}, 0.0 \} \f$.
*
* Intuitively it is the minimum value of \f$ \epsilon \ge 0 \f$ such
* that q \f$\epsilon\f$ -dominates (\f$\epsilon\f$ -covers) p in the
* additive sense.
*
* Note that this method does not require the points to be positive.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
* - May throw a DifferentDimensionsException exception if the two
* Point instances are of different dimensions (can't be compared).
*
* \sa Point, Point::distance() and Point::dominatesAdditive()
*/
double
Point::additiveDistance(const Point & q) const
{
if (isNull() or q.isNull())
throw exception_classes::NullObjectException();
if (dimension() != q.dimension())
throw exception_classes::DifferentDimensionsException();
// else
double minEpsilon = 0.0;
for (unsigned int i=0; i<dimension(); ++i) {
double d = q[i] - coordinates_[i];
if (d > minEpsilon)
// in here only when d > minEpsilon and d > 0.0
minEpsilon = d;
}
return minEpsilon;
}
//! Check if the current point (p) eps-dominates the given point (q).
/*!
* \param q A Point instance.
* \param eps An approximation parameter.
* \return true if p eps-covers q; false otherwise.
*
* There are two different definitions of eps-dominance we could use:
* - Additive eps-dominance. Where a point q is \f$\epsilon\f$ -dominated
* by a point p if:
* \f$ p_{i} \le q_{i} + \epsilon \f$ for all i.
* - Multiplicative eps-dominance. Where a point q is \f$\epsilon\f$
* -dominated by a point p if:
* \f$ p_{i} \le (1 + \epsilon) q_{i} \f$ for all i.
*
* Note that for the additive variant both points must be positive (i.e.
* both \f$ p_{i} \ge 0 \f$ and \f$ q_{i} \ge 0 \f$ must hold for all
* i), whereas for the multiplicative variant both points must be
* strictly positive (i.e. both \f$ p_{i} > 0 \f$ and \f$ q_{i} > 0 \f$
* must hold for all i).
*
* This method checks for errors and then calls either the
* dominatesAdditive() or the dominatesMultiplicative() method.
* (which one will be called is currently hardcoded in this method's
* implementation)
*
* Currently using the additive error measure.
*
* If eps=0.0 the method simply checks whether or not p dominates
* q and that is how it got its name.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
* - May throw a NegativeApproximationRatioException if \f$ eps < 0 \f$.
* - May throw a DifferentDimensionsException if p and q are of different
* dimensions.
*
* \sa Point, Point::dominatesAdditive() and
* Point::dominatesMultiplicative()
*/
bool
Point::dominates(const Point & q, double eps) const
{
return dominatesAdditive(q, eps);
}
/*!
* \brief Check if the current point (p) eps-dominates (in the additive
* sense) the given point (q).
*
* We say that a point q is \f$\epsilon\f$ -dominated (\f$\epsilon\f$
* -covered) by a point p in the additive sense if:
* \f$ p_i \le q_i + \epsilon \f$ for all i.
*
* Note that both p and q must be greater than zero for the additive
* variant, that is both \f$ p_{i} \ge 0 \f$ and \f$ q_{i} \ge 0 \f$
* must hold for all i.
*
* If eps=0.0 the method simply checks whether or not p dominates
* q and that is how it got its name.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
* - May throw a NegativeApproximationRatioException if \f$ eps < 0 \f$.
* - May throw a DifferentDimensionsException if p and q are of different
* dimensions.
* - May throw a NotPositivePointException exception if either p or q
* is not positive (i.e. some coordinate is less than zero).
*
* \sa Point, Point::dominates() and Point::distance()
*/
bool
Point::dominatesAdditive(const Point & q, double eps) const
{
if (isNull() or q.isNull())
throw exception_classes::NullObjectException();
if (dimension() != q.dimension())
throw exception_classes::DifferentDimensionsException();
if (eps < 0.0)
throw exception_classes::NegativeApproximationRatioException();
if (not isPositive() or not q.isPositive())
throw exception_classes::NotPositivePointException();
// else
for (unsigned int i=0; i<dimension(); ++i)
if (coordinates_[i] > q[i] + eps)
return false;
return true;
}
/*!
* \brief Check if the current point (p) eps-dominates (in the
* multiplicative sense) the given point (q).
*
* \param q A Point instance with \f$ q_{i} \ge 0 \f$ for all i.
* \param eps An approximation factor. (default 0.0)
* \return true if p eps-covers q, false otherwise.
*
* We say that a point q is \f$\epsilon\f$ -dominated (\f$\epsilon\f$
* -covered) by a point p in the multiplicative sense if:
* \f$ p_i \le (1 + \epsilon) q_i \f$ for all i.
*
* Note that both p and q must be strictly greater than zero for the
* multiplicative variant, that is both \f$ p_{i} > 0 \f$ and
* \f$ q_{i} > 0 \f$ must hold for all i.
*
* If eps=0.0 the method simply checks whether or not p dominates
* q and that is how it got its name.
*
* Possible exceptions:
* - May throw a NullObjectException exception if the point is null.
* - May throw a NegativeApproximationRatioException if \f$ eps < 0 \f$.
* - May throw a DifferentDimensionsException if p and q are of different
* dimensions.
* - May throw a NotStrictlyPositivePointException if either p or q
* is not strictly positive (i.e. some coordinate is not strictly
* greater than zero).
*
* \sa Point, Point::dominates() and Point::distance()
*/
bool
Point::dominatesMultiplicative(const Point & q, double eps) const
{
if (isNull() or q.isNull())
throw exception_classes::NullObjectException();
if (dimension() != q.dimension())
throw exception_classes::DifferentDimensionsException();
if (eps < 0.0)
throw exception_classes::NegativeApproximationRatioException();
if (not isStrictlyPositive() or not q.isStrictlyPositive())
throw exception_classes::NotStrictlyPositivePointException();
// else
double r = 1+eps;
for (unsigned int i=0; i<dimension(); ++i)
if (coordinates_[i] > r * q[i])
return false;
return true;