forked from Anirudh-Muthukumar/Causal-Mediation-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_profession_neuron_experiments BERT.py
168 lines (144 loc) · 5.05 KB
/
run_profession_neuron_experiments BERT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""Run all the extraction for a model across many templates.
"""
import argparse
import os
from datetime import datetime
import torch
from transformers import BertTokenizer
from experiment import Intervention, Model
from utils import convert_results_to_pd
parser = argparse.ArgumentParser(description="Run a set of neuron experiments.")
parser.add_argument(
"-model",
type=str,
default="bert-base-cased", # changed
help="""Model type [distilgpt2, gpt-2, etc.].""",
)
parser.add_argument(
"-out_dir", default=".", type=str, help="""Path of the result folder."""
)
parser.add_argument(
"-template_indices",
nargs="+",
type=int,
help="Give the indices of templates if you want to run on only a subset",
)
parser.add_argument(
"--randomize", default=False, action="store_true", help="Randomize model weights."
)
opt = parser.parse_args()
def get_profession_list():
# Get the list of all considered professions
word_list = []
with open("experiment_data/professions.json", "r") as f:
for l in f:
# there is only one line that eval"s to an array
for j in eval(l):
word_list.append(j[0])
return word_list
def get_template_list(indices=None):
# Get list of all considered templates
# "That" sentences are ours
# "Because" sentences are a subset
# from https://arxiv.org/pdf/1807.11714.pdf (Lu et al.)
templates = [
"The {} said that",
"The {} yelled that",
"The {} whispered that",
"The {} wanted that",
"The {} desired that",
"The {} wished that",
"The {} ate because",
"The {} ran because",
"The {} drove because",
"The {} slept because",
"The {} cried because",
"The {} laughed because",
"The {} went home because",
"The {} stayed up because",
"The {} was fired because",
"The {} was promoted because",
"The {} yelled because",
]
if indices:
subset_templates = [templates[i - 1] for i in indices]
print("subset of templates:", subset_templates)
return subset_templates
return templates
def get_intervention_types():
return [
"man_direct",
"man_indirect",
"woman_direct",
"woman_indirect",
]
def construct_interventions(base_sent, professions, tokenizer, DEVICE):
interventions = {}
all_word_count = 0
used_word_count = 0
for p in professions:
all_word_count += 1
try:
interventions[p] = Intervention(
tokenizer, base_sent, [p, "man", "woman"], ["he", "she"], device=DEVICE
)
used_word_count += 1
except:
pass
print(
"\t Only used {}/{} professions due to tokenizer".format(
used_word_count, all_word_count
)
)
return interventions
def run_all(
model_type="bert-base-cased", # changed
device="cuda",
out_dir=".",
random_weights=False,
template_indices=None,
):
print("Model:", model_type, flush=True)
# Set up all the potential combinations.
professions = get_profession_list()
templates = get_template_list(template_indices)
intervention_types = get_intervention_types()
# Initialize Model and Tokenizer.
tokenizer = BertTokenizer.from_pretrained(model_type) # Changed
model = Model(device=device, gpt2_version=model_type, random_weights=random_weights)
# Set up folder if it does not exist.
dt_string = datetime.now().strftime("%Y%m%d")
folder_name = dt_string + "_neuron_intervention"
base_path = os.path.join(out_dir, "results", folder_name)
if random_weights:
base_path = os.path.join(base_path, "random")
if not os.path.exists(base_path):
os.makedirs(base_path)
# Iterate over all possible templates.
for temp in templates:
print("Running template '{}' now...".format(temp), flush=True)
# Fill in all professions into current template
interventions = construct_interventions(temp, professions, tokenizer, device)
# Consider all the intervention types
for itype in intervention_types:
print("\t Running with intervention: {}".format(itype), flush=True)
# Run actual exp.
intervention_results = model.neuron_intervention_experiment(
interventions, itype, alpha=1.0
)
df = convert_results_to_pd(interventions, intervention_results)
# Generate file name.
temp_string = "_".join(temp.replace("{}", "X").split())
model_type_string = model_type
fname = "_".join([temp_string, itype, model_type_string])
# Finally, save each exp separately.
df.to_csv(os.path.join(base_path, fname + ".csv"))
if __name__ == "__main__":
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
run_all(
opt.model,
device,
opt.out_dir,
random_weights=opt.randomize,
template_indices=opt.template_indices,
)