-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSolveStrategy.m
134 lines (128 loc) · 4.76 KB
/
SolveStrategy.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
global maxForkLen;
global numOfStates; numOfStates = (maxForkLen+1) * (maxForkLen+1) * 3;
disp(['numOfStates: ' num2str(numOfStates)]);
% a and h can be 0 to maxForkLen, altogether maxForkLen + 1 values
global alphaPower gammaRatio;
% fork: 0 means irrelevant: match is not feasible, either last block is
% selfish OR honest branch is empty
% 1 means relevant: if a>=h now, match is feasible, e.g. last block is honest
% 2 means active (just perfomed a match)
global irrelevant relevant active;
irrelevant = 0; relevant = 1; active = 2;
% actions: 1 adopt, 2 override, 3 match, 4 wait
choices = 4;
adopt = 1; override = 2; match = 3; wait = 4;
global rou Wrou lowerBoundRou;
global P Rs Rh;
P = cell(1,choices);
% Rs is the reward for selfish miner
Rs = cell(1,choices);
% Rh is the reward for honest miners
Rh = cell(1,choices);
Wrou = cell(1,choices);
for i = 1:choices
P{i} = sparse(numOfStates, numOfStates);
Rs{i} = sparse(numOfStates, numOfStates);
Rh{i} = sparse(numOfStates, numOfStates);
Wrou{i} = sparse(numOfStates, numOfStates);
end
% define adopt
P{adopt}(:, st2stnum(1, 0, irrelevant)) = alphaPower;
P{adopt}(:, st2stnum(0, 1, irrelevant)) = 1 - alphaPower;
for i = 1:numOfStates
if mod(i, 2000)==0
disp(['processing state: ' num2str(i)]);
end
[a h fork] = stnum2st(i);
Rh{adopt}(i,st2stnum(1, 0, irrelevant)) = h;
Rh{adopt}(i,st2stnum(0, 1, irrelevant)) = h;
% define override
if a > h
P{override}(i, st2stnum(a-h, 0, irrelevant)) = alphaPower;
Rs{override}(i, st2stnum(a-h, 0, irrelevant)) = h+1;
P{override}(i, st2stnum(a-h-1, 1, relevant)) = 1-alphaPower;
Rs{override}(i, st2stnum(a-h-1, 1, relevant)) = h+1;
else % just for completeness
P{override}(i, 1) = 1;
Rh{override}(i, 1) = 10000;
end
% define wait
if fork ~= active && a+1 <= maxForkLen && h+1 <= maxForkLen
P{wait}(i, st2stnum(a+1, h, irrelevant)) = alphaPower;
P{wait}(i, st2stnum(a, h+1, relevant)) = 1-alphaPower;
elseif fork == active && a > h && h > 0 && a+1 <= maxForkLen && h+1 <= maxForkLen
P{wait}(i, st2stnum(a+1, h, active)) = alphaPower;
P{wait}(i, st2stnum(a-h, 1, relevant)) = gammaRatio*(1-alphaPower);
Rs{wait}(i, st2stnum(a-h, 1, relevant)) = h;
P{wait}(i, st2stnum(a, h+1, relevant)) = (1-gammaRatio)*(1-alphaPower);
else
P{wait}(i, 1) = 1;
Rh{wait}(i, 1) = 10000;
end
% define match: match if feasible only when the last block is honest
% and the selfish miner has more blocks before the last block is mined
if fork == relevant && a >= h && h > 0 && a+1 <= maxForkLen && h+1 <= maxForkLen
P{match}(i, st2stnum(a+1, h, active)) = alphaPower;
P{match}(i, st2stnum(a-h, 1, relevant)) = gammaRatio * (1-alphaPower);
Rs{match}(i, st2stnum(a-h, 1, relevant)) = h;
P{match}(i, st2stnum(a, h+1, relevant)) = (1-gammaRatio) * (1-alphaPower);
else
P{match}(i, 1) = 1;
Rh{match}(i, 1) = 10000;
end
end
disp(mdp_check(P, Rs))
epsilon = 0.0001;
lowRou = 0;
highRou = 1;
while(highRou - lowRou > epsilon/8)
rou = (highRou + lowRou) / 2;
for i = 1:choices
Wrou{i} = (1-rou).*Rs{i} - rou.*Rh{i};
end
[lowerBoundPolicy reward cpuTime] = mdp_relative_value_iteration(P, Wrou, epsilon/8);
if(reward > 0)
lowRou = rou;
else
highRou = rou;
end
end
disp('lowerBoundReward: ')
format long
disp(rou)
lowerBoundRou = rou;
lowRou = rou;
highRou = min(rou + 0.1, 1);
while(highRou - lowRou > epsilon/8)
rou = (highRou + lowRou) / 2;
for i=1:numOfStates
[a h fork] = stnum2st(i);
if a == maxForkLen
mid1 = (1-rou)*alphaPower*(1-alphaPower)/(1-2*alphaPower)^2+0.5*((a-h)/(1-2*alphaPower)+a+h);
Rs{adopt}(i, st2stnum(1, 0, irrelevant)) = mid1;
Rs{adopt}(i, st2stnum(0, 1, irrelevant)) = mid1;
Rh{adopt}(i, st2stnum(1, 0, irrelevant)) = 0;
Rh{adopt}(i, st2stnum(0, 1, irrelevant)) = 0;
elseif h == maxForkLen
mid1=alphaPower*(1-alphaPower)/((1-2*alphaPower)^2);
mid2=(alphaPower/(1-alphaPower))^(h-a);
mid3=(1-mid2)*(0-rou)*h+mid2*(1-rou)*(mid1+(h-a)/(1-2*alphaPower));
Rs{adopt}(i, st2stnum(1, 0, irrelevant)) = mid3;
Rs{adopt}(i, st2stnum(0, 1, irrelevant)) = mid3;
Rh{adopt}(i, st2stnum(1, 0, irrelevant)) = 0;
Rh{adopt}(i, st2stnum(0, 1, irrelevant)) = 0;
end
end
for i = 1:choices
Wrou{i} = (1-rou).*Rs{i} - rou.*Rh{i};
end
rouPrime = max(lowRou-epsilon/4, 0);
[upperBoundPolicy reward cpuTime] = mdp_relative_value_iteration(P, Wrou, epsilon/8);
if(reward > 0)
lowRou = rou;
else
highRou = rou;
end
end
disp('upperBoundReward: ')
disp(rou)