forked from SamuelHainsworth/HCV-Agent-Model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulated_annealing.py
93 lines (54 loc) · 2.32 KB
/
simulated_annealing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# uses simulated annealing to optimise the objective function
import numpy as np
from copy import deepcopy as dc
import random
import warnings
def acceptance_prob(oldCost, newCost, temp):
warnings.filterwarnings("error") # to catch overflow in exp func
try:
prob = np.exp((oldCost - newCost)/temp )
except RuntimeWarning:
prob = 1 # definitely accepts
return prob
def get_neighbours(solutionDict):
# Produce set of randomly selected neighbours of a given solution
# random scaling factor
alpha = np.random.random_sample()
newSolution = dc(solutionDict)
lgaList = list(newSolution.keys())
int1 = random.randint(0, len(lgaList)-1)
int2 = random.randint(0, len(lgaList)-1)
# get lga code
lga1 = lgaList[int1]
lga2 = lgaList[int2]
# lga1Nurses = (alpha*lga1Nurses + (1-alpha)*lga2Nurses) etc.
newSolution[lga1]['Nurses']= newSolution[lga1]['Nurses']*alpha + newSolution[lga2]['Nurses']*(1-alpha)
newSolution[lga2]['Nurses'] = newSolution[lga2]['Nurses']*alpha + newSolution[lga1]['Nurses']*(1-alpha)
newSolution[lga1]['Specialists'] = newSolution[lga2]['Specialists']*alpha + newSolution[lga1]['Specialists']*(1-alpha)
newSolution[lga2]['Specialists'] = newSolution[lga1]['Specialists']*alpha + newSolution[lga2]['Specialists']*(1-alpha)
return newSolution
def cost(objective_func, **args):
cost = objective_func(**args)
return cost
def anneal(objective_func, minTemp=0.0001, alpha=0.8, maxIter=100, **args):
argCopy = dc(args)
oldSolution = argCopy['proposedInterventionDict']
temp = 1
# get initial objective func value
oldCost = cost(objective_func, **argCopy)
for iteration in range(maxIter):
# stop if cooled
if temp < minTemp:
return oldSolution, oldCost
else:
newSolution = get_neighbours(argCopy['proposedInterventionDict'] )
newCost = cost(objective_func, **argCopy)
# accept with prob 1 if better, < 1 if worse
if acceptance_prob(oldCost, newCost, temp) > np.random.rand():
argCopy['proposedInterventionDict'] = newSolution
oldCost = newCost
# decrease the temp
temp = temp*alpha
print(oldCost)
print(newCost)
return argCopy['proposedInterventionDict'], oldCost