-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
executable file
·463 lines (380 loc) · 18.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import argparse
import os
import time
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import numpy as np
import datetime
import uuid
import tensorboard_logger
from resnet.resnetcifar import *
from densenet.densenetcifar import *
from datasets.noisycifar import NCIFAR10
# from datasets.noisycifar import NCIFAR100
# from datasets.nsvhn import NSVHN
parser = argparse.ArgumentParser(description='PyTorch ResNet and PP-ResNet Training')
parser.add_argument('--dataset', default='cifar10', type=str, help='dataset (cifar10 [default], cifar100, svhn)')
parser.add_argument('--arch', default='resnet', type=str, help='architecture (resnet, densenet, [... more to come ...])')
parser.add_argument('--epochs', default=160, type=int, help='number of total epochs to run')
parser.add_argument('--milestones', default='[80, 120]', type=str, help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
parser.add_argument('--extra-epochs', default=0, type=int, help='number of extra epochs to run')
parser.add_argument('--extra-milestones', default='[160]', type=str, help='extra epoch milestones for the scheduler')
parser.add_argument('-b', '--batch-size', default=128, type=int, help='mini-batch size (default: 128)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--nesterov', default=True, type=bool, help='nesterov momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, help='weight decay (default: 5e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int, help='print frequency (default: 10)')
parser.add_argument('--layers', default=20, type=int, help='total number of layers (default: 20)')
parser.add_argument('--growth', default=12, type=int,
help='number of new channels per layer (default: 12)') # for densenet
parser.add_argument('--droprate', default=0, type=float, help='dropout probability (default: 0.0)')
parser.add_argument('--reduce', default=0.5, type=float,
help='compression rate in transition stage (default: 0.5)')
parser.add_argument('--no-efficient', dest='efficient', action='store_false',
help='To not use bottleneck block')
parser.add_argument('--pushpull', action='store_true', help='use Push-Pull layer as 1st layer (default: False)')
parser.add_argument('--pp-block1', action='store_true', help='use 1st PushPull residual block')
parser.add_argument('--pp-all', action='store_true', help='use all PushPull residual block')
parser.add_argument('--train-alpha', action='store_true', help='whether to learn the values of alpha ')
parser.add_argument('--alpha-pp', default=1, type=float, help='inhibition factor (default: 1.0)')
parser.add_argument('--scale-pp', default=2, type=float, help='upsampling factor for PP kernels (default: 2)')
parser.add_argument('--lpf-size', default=None, type=int, help='Size of the LPF for anti-aliasing (default: 1)')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='use standard augmentation (default: True)')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--name', default='resnet20', type=str, help='name of experiment')
parser.add_argument('--tensorboard', help='Log progress to TensorBoard', action='store_true')
parser.set_defaults(augment=True)
best_prec1 = 0
use_cuda = False
def main():
global args, best_prec1, use_cuda
args = parser.parse_args()
# Data loading code
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
if args.augment:
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
(4, 4, 4, 4), mode='reflect').squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
else:
transform_train = transforms.Compose([
transforms.ToTensor()
])
transform_test = transforms.Compose([
transforms.ToTensor()
])
kwargs = {'num_workers': 0, 'pin_memory': True}
assert (args.dataset == 'cifar10' or args.dataset == 'cifar100' or args.dataset == 'svhn')
if args.dataset == 'cifar10':
nclasses = 10
dataset_train = NCIFAR10('./data', train=True,
transform=transform_train,
normalize_transform=normalize)
dataset_test = NCIFAR10('./data', train=False,
transform=transform_test,
normalize_transform=normalize)
else:
raise RuntimeError('no other data set implementations available')
'''
elif args.dataset == 'cifar100':
nclasses = 100
dataset_train = NCIFAR100('./data', train=True, transform=transform_train,
normalize_transform=normalize, download=True)
dataset_test = NCIFAR100('./data', train=False, transform=transform_test,
normalize_transform=normalize, download=True)
elif args.dataset == 'svhn':
nclasses = 10
dataset_train = NSVHN('./data', split='train', transform=transform_train,
normalize_transform=normalize)
dataset_test = NSVHN('./data', split='test', transform=transform_test,
normalize_transform=normalize)
'''
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=args.batch_size,
shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(dataset_test, batch_size=args.batch_size,
shuffle=False, **kwargs)
# --------------------------------------------------------------------------------
# create model
if args.arch == 'resnet':
experiment_dir = 'experiments/'
output_dir = experiment_dir + 'resnet-cifar/'
rnargs = {'use_pp1': args.pushpull,
'pp_block1': args.pp_block1,
'pp_all': args.pp_all,
'train_alpha': args.train_alpha,
'size_lpf': args.lpf_size}
if args.layers == 20:
model = resnet20(**rnargs)
elif args.layers == 32:
model = resnet32(**rnargs)
elif args.layers == 44:
model = resnet44(**rnargs)
elif args.layers == 56:
model = resnet56(**rnargs)
elif args.arch == 'densenet':
experiment_dir = 'experiments/'
output_dir = experiment_dir + 'densenet-cifar/'
rnargs = {'use_pp1': args.pushpull,
'pp_block1': args.pp_block1,
'num_classes': nclasses,
'small_inputs': True,
'efficient': args.efficient,
'compression': args.reduce,
'drop_rate': args.droprate,
# 'scale_pp': args.scale_pp,
# 'alpha_pp': args.alpha_pp
}
if args.layers == 40:
model = densenet40_12(**rnargs)
elif args.layers == 100:
if args.growth == 12:
model = densenet100_12(**rnargs)
elif args.growth == 24:
model = densenet100_24(**rnargs)
else:
raise RuntimeError('chosen architecture not implemented (yet)...')
logger = None
if args.tensorboard:
ustr = datetime.datetime.now().strftime("%y-%m-%d_%H-%M_") + uuid.uuid4().hex[:3]
logger = tensorboard_logger.Logger(experiment_dir + "tensorboard/" + args.name + '/' + ustr)
# get the number of model parameters
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
# --------------------------------------------------------------------------------
use_cuda = torch.cuda.is_available()
# for training on multiple GPUs.
# Use CUDA_VISIBLE_DEVICES=0,1 to specify which GPUs to use
# model = torch.nn.DataParallel(model).cuda()
if use_cuda:
model = model.cuda()
# optionally resume from a checkpoint
epoch = None
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss()
if use_cuda:
criterion = criterion.cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum, nesterov=args.nesterov,
weight_decay=args.weight_decay)
lr_milestones = json.loads(args.milestones)
if args.extra_epochs > 0:
lr_milestones = list(set(lr_milestones + json.loads(args.extra_milestones)))
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=lr_milestones,
gamma=0.1)
scheduler.step(epoch)
directory = output_dir + "%s/" % args.name
if not os.path.exists(directory):
os.makedirs(directory)
for epoch in range(args.start_epoch, args.epochs + args.extra_epochs):
fileout = open(output_dir + args.name + '/log.txt', "a+")
# adjust_learning_rate(logger, optimizer, epoch + 1, args.epochs)
scheduler.step()
print('lr(', epoch, '): ', scheduler.get_lr())
# train for one epoch
train(logger, train_loader, model, criterion, optimizer, epoch, fileout)
# evaluate on validation set
prec1 = validate(logger, val_loader, model, criterion, epoch, fileout)
fileout.close()
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, is_best, output_dir)
print('Best accuracy: ', best_prec1)
fileout = open(output_dir + args.name + '/log.txt', "a+")
fileout.write('Best accuracy: {}\n'.format(best_prec1))
fileout.close()
def train(logger, train_loader, model, criterion, optimizer, epoch, file=None):
"""Train for one epoch on the training set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
global use_cuda
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
if use_cuda:
target = target.cuda(async=True)
input = input.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss = loss.detach()
output = output.detach()
# measure accuracy and record loss
prec1 = accuracy(output, target, topk=(1,))[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(epoch, i,
len(train_loader),
batch_time=batch_time,
loss=losses, top1=top1))
if file is not None:
file.write('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) \n'.format(epoch, i, len(train_loader),
batch_time=batch_time, loss=losses,
top1=top1))
if logger is not None:
if i % (args.print_freq / 2) == 0:
log_alpha_histograms(logger, epoch * len(train_loader) + i, model)
logger.log_scalar('train_loss', losses.avg, epoch * len(train_loader) + i)
logger.log_scalar('train_acc', top1.avg, epoch * len(train_loader) + i)
def to_np(x):
return x.detach().cpu().numpy()
def log_alpha_histograms(logger, step, model):
mode = 'train'
# Log histograms of weights and grads.
for h_name, h in zip(['model'], [model]):
for tag, value in h.named_parameters():
if 'alpha' in tag:
tag = h_name + '/' + tag.replace('.', '/')
logger.log_histogram(tag, to_np(value), step)
# False is temporary to avoid this logging to happen
if value.grad is not None:
logger.log_histogram(tag + '/grad', to_np(value.grad), step, bins=np.linspace(-.2, .2, 100))
def validate(logger, val_loader, model, criterion, epoch, file=None):
"""Perform validation on the validation set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
if use_cuda:
target = target.cuda(async=True)
input = input.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
with torch.no_grad():
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(i, len(val_loader),
batch_time=batch_time, loss=losses,
top1=top1))
if file is not None:
file.write('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) \n'.format(i, len(val_loader),
batch_time=batch_time, loss=losses,
top1=top1))
print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1))
file.write(' * Prec@1 {top1.avg:.3f} \n'.format(top1=top1))
# log to TensorBoard
if args.tensorboard:
logger.log_scalar('val_loss', losses.avg, epoch)
logger.log_scalar('val_acc', top1.avg, epoch)
return top1.avg
def save_checkpoint(state, is_best, output_dir, filename='checkpoint.pth.tar'):
"""Saves checkpoint to disk"""
directory = output_dir + args.name
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + "/" + filename
torch.save(state, filename)
# if is_best:
# shutil.copyfile(filename, 'resnet/runs/%s/' % (args.name) + 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(logger, optimizer, epoch, totepochs):
"""Sets the learning rate to the initial LR divided by 5 at 60th, 120th and 180th epochs"""
if args.dataset == 'cifar10' or 'cifar100':
lr = args.lr * ((0.1 ** int(epoch >= totepochs * 0.50)) * (0.1 ** int(epoch >= totepochs * 0.75)) *
(0.1 ** int(epoch >= totepochs * 0.95)))
# in the case some extra epochs are needed (full PP network case)
lr = args.lr * (0.2 ** int(epoch >= totepochs * 1.1))
elif args.dataset == 'svhn':
lr = args.lr * ((0.1 ** int(epoch >= totepochs * 0.5)) *
(0.1 ** int(epoch >= totepochs * 0.75)))
# log to TensorBoard
if args.tensorboard:
logger.log_scalar('learning_rate', lr, epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()