-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathESA_slidedeck.html
901 lines (702 loc) · 29.8 KB
/
ESA_slidedeck.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Ecological Time Series Analysis and Forecasting</title>
<meta charset="utf-8" />
<meta name="author" content="Nicholas Clark" />
<script src="libs/header-attrs/header-attrs.js"></script>
<link href="libs/remark-css/default.css" rel="stylesheet" />
<link href="libs/panelset/panelset.css" rel="stylesheet" />
<script src="libs/panelset/panelset.js"></script>
<link href="libs/animate.css/animate.xaringan.css" rel="stylesheet" />
<script src="libs/clipboard/clipboard.min.js"></script>
<link href="libs/xaringanExtra-clipboard/xaringanExtra-clipboard.css" rel="stylesheet" />
<script src="libs/xaringanExtra-clipboard/xaringanExtra-clipboard.js"></script>
<script>window.xaringanExtraClipboard(null, {"button":"Copy Code","success":"Copied!","error":"Press Ctrl+C to Copy"})</script>
<link href="libs/tile-view/tile-view.css" rel="stylesheet" />
<script src="libs/tile-view/tile-view.js"></script>
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="slides.css" type="text/css" />
</head>
<body>
<textarea id="source">
class: inverse, middle, left, my-title-slide, title-slide
.title[
# Ecological Time Series Analysis and Forecasting
]
.author[
### Nicholas Clark
]
.institute[
### School of Veterinary Science, University of Queensland, Australia
]
.date[
### Friday 13th December, 2024
]
---
class: middle center
<style>.panelset{--panel-tab-foreground: #8F2727;--panel-tab-inactive-opacity: 0.8;}</style>
# Welcome
???
---
## Workflow
Press the "o" key on your keyboard to navigate among html slides
Access the [workshop materials here](https://github.com/nicholasjclark/ESA_2024_timeseries)
- View the sample <svg aria-hidden="true" role="img" viewBox="0 0 581 512" style="height:1em;width:1.13em;vertical-align:-0.125em;margin-left:auto;margin-right:auto;font-size:inherit;fill:steelblue;overflow:visible;position:relative;"><path d="M581 226.6C581 119.1 450.9 32 290.5 32S0 119.1 0 226.6C0 322.4 103.3 402 239.4 418.1V480h99.1v-61.5c24.3-2.7 47.6-7.4 69.4-13.9L448 480h112l-67.4-113.7c54.5-35.4 88.4-84.9 88.4-139.7zm-466.8 14.5c0-73.5 98.9-133 220.8-133s211.9 40.7 211.9 133c0 50.1-26.5 85-70.3 106.4-2.4-1.6-4.7-2.9-6.4-3.7-10.2-5.2-27.8-10.5-27.8-10.5s86.6-6.4 86.6-92.7-90.6-87.9-90.6-87.9h-199V361c-74.1-21.5-125.2-67.1-125.2-119.9zm225.1 38.3v-55.6c57.8 0 87.8-6.8 87.8 27.3 0 36.5-38.2 28.3-87.8 28.3zm-.9 72.5H365c10.8 0 18.9 11.7 24 19.2-16.1 1.9-33 2.8-50.6 2.9v-22.1z"/></svg> scripts in [live_code_examples](https://github.com/nicholasjclark/ESA_2024_timeseries/tree/main/live_code_examples)
- Use the [Google Doc](https://docs.google.com/document/d/1xd3icf1wxGxO3SVt2AmKO8CkeKv1QpsxgqK7rR15U08/edit?tab=t.0#heading=h.ds87nag4ykyb) to ask questions
Relevant open-source materials include:
- [Forecasting Principles and Practice](https://otexts.com/fpp3/)
- [Applied Time Series Analysis](https://atsa-es.github.io/atsa-labs/)
- [Ecological Forecasting & Dynamics Course](https://github.com/nicholasjclark/physalia-forecasting-course/tree/main)
- [A blog on how to use and interpret GAMs](https://ecogambler.netlify.app/blog/)
---
## This workshop's topics
Introductions
Why are time series difficult?
Common time series models
Why they fail in ecology
State-Space GAMs and the `mvgam` 📦
---
class: inverse middle center big-subsection
# Tell us about yourself
---
## Some challenges of time series
Temporal autocorrelation
Lagged effects
Non-Gaussian data and missing observations
Measurement error
Time-varying effects
Nonlinearities
Multi-series clustering
---
## A *positively* autocorrelated series
.panelset[
.panel[.panel-name[Code]
```r
# set seed for reproducibility
set.seed(1111)
# number of timepoints
T <- 100
# use arima.sim to simulate from an AR(1) model
series <- arima.sim(model = list(ar = 0.8), n = T, sd = 1)
# plot the time series as a line
plot(series, type = 'l', bty = 'l', lwd = 2,
col = 'darkred', ylab = 'Y', xlab = 'Time')
```
]
.panel[.panel-name[Model]
`$$\boldsymbol{Y}_{t}\sim \text{Normal}(\color{darkred}{0.8} * \boldsymbol{Y}_{t-1},\color{darkred}{1})$$`
]
.panel[.panel-name[Plot]
.center[![](ESA_slidedeck_files/figure-html/ar_sim-1.svg)]
]
]
---
## A *negatively* autocorrelated series
.panelset[
.panel[.panel-name[Code]
```r
# set seed for reproducibility
set.seed(1111)
# number of timepoints
T <- 100
# use arima.sim to simulate from an AR(1) model
series <- arima.sim(model = list(ar = -0.8), n = T, sd = 1)
# plot the time series as a line
plot(series, type = 'l', bty = 'l', lwd = 2,
col = 'darkred', ylab = 'Y', xlab = 'Time')
```
]
.panel[.panel-name[Model]
`$$\boldsymbol{Y}_{t}\sim \text{Normal}(\color{darkred}{-0.8} * \boldsymbol{Y}_{t-1},\color{darkred}{1})$$`
]
.panel[.panel-name[Plot]
.center[![](ESA_slidedeck_files/figure-html/ar_simneg-1.svg)]
]
]
---
class: full-size
## Seasonality
.pull-right-bigger[![Lynx](resources/canada-lynx-gary-pritts.jpg)]
Many time series show .emphasize[*repeated periodic cycles*]
- Breeding seasons
- Migration
- Green-ups / green-downs
- Lunar cycles
- Predator / prey dynamics
Often change slowly over time
---
## Example seasonal series
<img src="ESA_slidedeck_files/figure-html/unnamed-chunk-3-1.svg" style="display: block; margin: auto;" />
---
## Decompose: trend + seasonality
<img src="ESA_slidedeck_files/figure-html/unnamed-chunk-4-1.svg" style="display: block; margin: auto;" />
---
class: middle center
### Modelling these multiple components, either additively or multiplicatively, is a major goal of most time series analysis procedures
---
## Common time series models
Random Walk ([RW](https://atsa-es.github.io/atsa-labs/sec-tslab-random-walks-rw.html))
Autoregressive ([AR](https://atsa-es.github.io/atsa-labs/sec-tslab-autoregressive-ar-models.html))
Autoregressive Integrated Moving Average ([ARIMA](https://otexts.com/fpp3/arima.html); require [stationarity](https://otexts.com/fpp3/stationarity.html))
Exponential Smoothing ([ETS](https://otexts.com/fpp3/expsmooth.html))
[Regression with ARIMA errors](https://otexts.com/fpp3/regarima.html)
---
## *Very* easy to apply in <svg aria-hidden="true" role="img" viewBox="0 0 581 512" style="height:1em;width:1.13em;vertical-align:-0.125em;margin-left:auto;margin-right:auto;font-size:inherit;fill:steelblue;overflow:visible;position:relative;"><path d="M581 226.6C581 119.1 450.9 32 290.5 32S0 119.1 0 226.6C0 322.4 103.3 402 239.4 418.1V480h99.1v-61.5c24.3-2.7 47.6-7.4 69.4-13.9L448 480h112l-67.4-113.7c54.5-35.4 88.4-84.9 88.4-139.7zm-466.8 14.5c0-73.5 98.9-133 220.8-133s211.9 40.7 211.9 133c0 50.1-26.5 85-70.3 106.4-2.4-1.6-4.7-2.9-6.4-3.7-10.2-5.2-27.8-10.5-27.8-10.5s86.6-6.4 86.6-92.7-90.6-87.9-90.6-87.9h-199V361c-74.1-21.5-125.2-67.1-125.2-119.9zm225.1 38.3v-55.6c57.8 0 87.8-6.8 87.8 27.3 0 36.5-38.2 28.3-87.8 28.3zm-.9 72.5H365c10.8 0 18.9 11.7 24 19.2-16.1 1.9-33 2.8-50.6 2.9v-22.1z"/></svg>
<img src="resources/fc_logo.png" style="position:fixed; right:8%; top:4%; width:100px; height:117px; border:none;" />
Tools in the [`forecast` 📦](https://pkg.robjhyndman.com/forecast/) are hugely popular and accessible for time series analysis / forecasting
[ETS](https://pkg.robjhyndman.com/forecast/reference/ets.html) handles many types of seasonality and nonlinear trends
[Regression with ARIMA errors](https://pkg.robjhyndman.com/forecast/reference/auto.arima.html) includes additive fixed effects of predictors while capturing trends and seasonality
*Some* of these algorithms can handle missing data
*All* are extremely fast to fit and forecast
---
## Great! But what about these?
.grey[Temporal autocorrelation
Lagged effects]
.emphasize[*Non-Gaussian data and missing observations*
*Measurement error*
*Time-varying effects*
*Nonlinearities*
*Multi-series clustering*]
---
## Ecological time series include
Counts of multiple species over time
Presence-absence of species
Repeated captures in multiple plots
Censored measures (OTUs / pollutants with limits of detection)
Phenology records
Tree rings
etc...
---
## Example ecological time series
</br>
.pull-left[
<img src="ESA_slidedeck_files/figure-html/unnamed-chunk-5-1.svg" style="display: block; margin: auto;" />
]
.pull-right[
<img src="ESA_slidedeck_files/figure-html/unnamed-chunk-6-1.svg" style="display: block; margin: auto;" />
]
---
## Another ecological time series
</br>
.pull-left[
<img src="ESA_slidedeck_files/figure-html/unnamed-chunk-7-1.svg" style="display: block; margin: auto;" />
]
.pull-right[
<img src="ESA_slidedeck_files/figure-html/unnamed-chunk-8-1.svg" style="display: block; margin: auto;" />
]
---
## Collections of ecological series
<img src="ESA_slidedeck_files/figure-html/unnamed-chunk-9-1.svg" style="display: block; margin: auto;" />
---
class: inverse white-subsection
background-image: url('./resources/bwbirds.jpeg')
background-size: cover
## All can have measurement error
---
class: inverse middle center big-subsection
# How can we do better?
---
background-image: url('./resources/SS_model.svg')
## State-Space models
---
## State-Space models
</br>
<img align="center" width="1200" height="300" src="resources/auger.jpg">
.small[[Auger-Methe *et al* 2021](https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecm.1470)]
---
## State-Space linear models
`\begin{align*}
Y_t & \sim Normal(\alpha + \sum_{j=1}^{J}(\beta_j x_{jt}) + Zz_t, \sigma_y) \\
z_t & \sim Normal(f(z_{t-lag}) + \sum_{k=1}^{K}(\beta_k q_{kt}), \sigma_z)
\end{align*}`
<br/>
Where:
- `\(\beta_j\)` capture linear effects of the `\(J\)` observation model predictors
- `\(z_t\)` is a .emphasize[*latent process*], weighted by a loading matrix `\(Z\)`
- `\(\beta_k\)` capture linear effects of the `\(K\)` process model predictors
---
background-image: url('./resources/df_with_series.gif')
## *Z* &#8680; induced correlations
---
# Gaussian!?!
Gaussian observation models won't give sensible predictions for bounded / discrete / non-Normal data
We can do better by choosing observation distributions that obey the constraints on our outcome variables
.emphasize[*Generalizes*] the linear regression by replacing parameters from other probability distributions with linear models
`\(\alpha + \sum_{j=1}^{J}(\beta_j x_{jt}) + Zz_t\)` &#8680; `\(g^{-1}(\alpha + \sum_{j=1}^{J}(\beta_j x_{jt}) + Zz_t)\)`
`\(g^{-1}\)` is the inverse of a nonlinear .emphasize[*link function*]
---
## Many relevant distributions
[Many useful GLM probability distributions exist](https://cran.r-project.org/web/packages/brms/vignettes/brms_families.html). Some of these include:
- .emphasize[*Negative Binomial*] &mdash; overdispersed integers in `\((0,1,2,...)\)`
- .emphasize[*Bernoulli*] &mdash; presence-absence data in `\(\{0,1\}\)`
- .emphasize[*Student's T*] &mdash; heavy-tailed (skewed) real values in `\((-\infty, \infty)\)`
- .emphasize[*Lognormal*] &mdash; heavy-tailed (right skewed) real values in `\((0, \infty)\)`
- .emphasize[*Gamma*] &mdash; lighter-tailed (less skewed) real values in `\((0, \infty)\)`
- .emphasize[*Multinomial*] &mdash; integers representing `\(K\)` unordered categories in `\((0,1,..., K)\)`
- .emphasize[*Ordinal*] &mdash; integers representing `\(K\)` ordered categories in `\((0,1,..., K)\)`
---
class: middle center
### State-Space GLMs allow us to build models that respect the bounds and distributions of our observed data
<br>
### They traditionally assume the appropriately transformed mean response depends *linearly* on the predictors, as well as on the latent states
<br>
### But there are many other properties we'd like to model, including nonlinearities. Time to get .multicolor[W I G G L Y]
---
background-image: url('./resources/smooth_only.gif')
## GAMs use splines ...
---
background-image: url('./ESA_slidedeck_files/figure-html/basis-functions-1.svg')
## ... made of basis functions
---
background-image: url('./resources/basis-functions-weights-1.svg')
## Weighting basis functions ...
---
background-image: url('./resources/basis_weights.gif')
## ... gives a spline `\((f(x))\)`
---
background-image: url('./resources/smooth_to_data.gif')
## Penalize `\(f"(x)\)` to learn weights
---
background-image: url('./ESA_slidedeck_files/figure-html/complexity-1.svg')
---
## State-Space GAMs
`\begin{align*}
\mathbb{E}(\boldsymbol{Y_t}|\boldsymbol{X_t}, \boldsymbol{Q_t}) & = g^{-1}(\alpha + \sum_{j=1}^{J}f(x_{jt}) + Zz_t) \\
z_t & \sim Normal(f(z_{t-lag}) + \sum_{k=1}^{K}f(q_{kt}), \sigma_z)
\end{align*}`
<br/>
Where:
- `\(f(x)\)` are potentially nonlinear functions of the `\(J\)` predictors
- `\(z_t\)` is a .emphasize[*latent process*], weighted by a loading matrix `\(Z\)`
- `\(f(q)\)` are potentially nonlinear functions of the `\(K\)` predictors
---
class: inverse middle center big-subsection
# Questions?
---
<img src="resources/mvgam_logo.png" style="position:fixed; right:8%; top:4%; width:100px; height:117px; border:none;" />
## The [`mvgam` 📦](https://github.com/nicholasjclark/mvgam/tree/master)
Bayesian framework to fit State-Space GAMs
- Hierarchical intercepts, slopes, smooths and Gaussian Processes
- Learning `\(Z\)` &#8680; JSDMs, N-mixture models, Dynamic Factors
Built off [`mgcv`](https://cran.r-project.org/web/packages/mgcv/index.html), [`brms` ](https://paulbuerkner.com/brms/) and [`splines2`](https://cran.r-project.org/web/packages/splines2/index.html) 📦's for flexible effects
Familiar <svg aria-hidden="true" role="img" viewBox="0 0 581 512" style="height:1em;width:1.13em;vertical-align:-0.125em;margin-left:auto;margin-right:auto;font-size:inherit;fill:steelblue;overflow:visible;position:relative;"><path d="M581 226.6C581 119.1 450.9 32 290.5 32S0 119.1 0 226.6C0 322.4 103.3 402 239.4 418.1V480h99.1v-61.5c24.3-2.7 47.6-7.4 69.4-13.9L448 480h112l-67.4-113.7c54.5-35.4 88.4-84.9 88.4-139.7zm-466.8 14.5c0-73.5 98.9-133 220.8-133s211.9 40.7 211.9 133c0 50.1-26.5 85-70.3 106.4-2.4-1.6-4.7-2.9-6.4-3.7-10.2-5.2-27.8-10.5-27.8-10.5s86.6-6.4 86.6-92.7-90.6-87.9-90.6-87.9h-199V361c-74.1-21.5-125.2-67.1-125.2-119.9zm225.1 38.3v-55.6c57.8 0 87.8-6.8 87.8 27.3 0 36.5-38.2 28.3-87.8 28.3zm-.9 72.5H365c10.8 0 18.9 11.7 24 19.2-16.1 1.9-33 2.8-50.6 2.9v-22.1z"/></svg> formula interface
Uni- or multivariate series from a range of response distributions
Uses [Stan](https://mc-stan.org/) for efficient Hamiltonian Monte Carlo sampling
---
class: middle center big-subsection
# [Package overview](https://nicholasjclark.github.io/mvgam/articles/mvgam_overview.html)
---
## Example of the interface
```r
model <- mvgam(
formula = y ~
s(series, bs = 're') +
s(x0, series, bs = 're') +
x1,
trend_formula = ~ gp(x2, k = 20) +
te(x3, x4, bs = c('cr', 'tp')),
data = data,
family = poisson(),
trend_model = AR(p = 1, ma = TRUE, cor = TRUE),
burnin = 500,
samples = 500,
chains = 4)
```
---
## Produce all `Stan` code and objects
```r
stancode(model)
```
.small[
```
## // Stan model code generated by package mvgam
## functions {
## /* Spectral density of a squared exponential Gaussian process
## * Args:
## * x: array of numeric values of dimension NB x D
## * sdgp: marginal SD parameter
## * lscale: vector of length-scale parameters
## * Returns:
## * numeric vector of length NB of the SPD evaluated at 'x'
## */
## vector spd_gp_exp_quad(data array[] vector x, real sdgp, vector lscale) {
## int NB = dims(x)[1];
## int D = dims(x)[2];
## int Dls = rows(lscale);
## real constant = square(sdgp) * sqrt(2 * pi()) ^ D;
## vector[NB] out;
## if (Dls == 1) {
## // one dimensional or isotropic GP
## real neg_half_lscale2 = -0.5 * square(lscale[1]);
## constant = constant * lscale[1] ^ D;
## for (m in 1 : NB) {
## out[m] = constant * exp(neg_half_lscale2 * dot_self(x[m]));
## }
## } else {
## // multi-dimensional non-isotropic GP
## vector[Dls] neg_half_lscale2 = -0.5 * square(lscale);
## constant = constant * prod(lscale);
## for (m in 1 : NB) {
## out[m] = constant * exp(dot_product(neg_half_lscale2, square(x[m])));
## }
## }
## return out;
## }
## }
## data {
## int<lower=1> k_gp_trend_x2_; // basis functions for approximate gp
## array[k_gp_trend_x2_] vector[1] l_gp_trend_x2_; // approximate gp eigenvalues
## array[20] int b_trend_idx_gp_x2_; // gp basis coefficient indices
## int<lower=0> total_obs; // total number of observations
## int<lower=0> n; // number of timepoints per series
## int<lower=0> n_sp_trend; // number of trend smoothing parameters
## int<lower=0> n_lv; // number of dynamic factors
## int<lower=0> n_series; // number of series
## matrix[n_series, n_lv] Z; // matrix mapping series to latent states
## int<lower=0> num_basis; // total number of basis coefficients
## int<lower=0> num_basis_trend; // number of trend basis coefficients
## vector[num_basis_trend] zero_trend; // prior locations for trend basis coefficients
## matrix[total_obs, num_basis] X; // mgcv GAM design matrix
## matrix[n * n_lv, num_basis_trend] X_trend; // trend model design matrix
## array[n, n_series] int<lower=0> ytimes; // time-ordered matrix (which col in X belongs to each [time, series] observation?)
## array[n, n_lv] int ytimes_trend;
## int<lower=0> n_nonmissing; // number of nonmissing observations
## matrix[24, 72] S_trend2; // mgcv smooth penalty matrix S_trend2
## array[n_nonmissing] int<lower=0> flat_ys; // flattened nonmissing observations
## matrix[n_nonmissing, num_basis] flat_xs; // X values for nonmissing observations
## array[n_nonmissing] int<lower=0> obs_ind; // indices of nonmissing observations
## }
## transformed data {
## vector[n_lv] trend_zeros = rep_vector(0.0, n_lv);
## }
## parameters {
## // gp term sd parameters
## real<lower=0> alpha_gp_trend_x2_;
##
## // gp term length scale parameters
## array[1] vector<lower=0>[1] rho_gp_trend_x2_;
##
## // gp term latent variables
## vector[k_gp_trend_x2_] z_gp_trend_x2_;
##
## // raw basis coefficients
## vector[num_basis] b_raw;
## vector[num_basis_trend] b_raw_trend;
##
## // latent state SD terms
## vector<lower=0>[n_lv] sigma;
## cholesky_factor_corr[n_lv] L_Omega;
##
## // random effect variances
## vector<lower=0>[2] sigma_raw;
##
## // random effect means
## vector[2] mu_raw;
##
## // latent state AR1 terms
## vector<lower=-1, upper=1>[n_lv] ar1;
##
## // ma coefficients
## matrix<lower=-1, upper=1>[n_lv, n_lv] theta;
##
## // dynamic error parameters
## array[n] vector[n_lv] error;
##
## // smoothing parameters
## vector<lower=0>[n_sp_trend] lambda_trend;
## }
## transformed parameters {
## // latent states and loading matrix
## vector[n * n_lv] trend_mus;
## matrix[n, n_series] trend;
## array[n] vector[n_lv] LV;
## array[n] vector[n_lv] epsilon;
##
## // LKJ form of covariance matrix
## matrix[n_lv, n_lv] L_Sigma;
##
## // computed error covariance matrix
## cov_matrix[n_lv] Sigma;
## matrix[n_series, n_lv] lv_coefs;
##
## // basis coefficients
## vector[num_basis] b;
## vector[num_basis_trend] b_trend;
##
## // observation model basis coefficients
## b[1 : 2] = b_raw[1 : 2];
## b[3 : 6] = mu_raw[1] + b_raw[3 : 6] * sigma_raw[1];
## b[7 : 10] = mu_raw[2] + b_raw[7 : 10] * sigma_raw[2];
##
## // process model basis coefficients
## b_trend[1 : num_basis_trend] = b_raw_trend[1 : num_basis_trend];
## b_trend[b_trend_idx_gp_x2_] = sqrt(spd_gp_exp_quad(l_gp_trend_x2_,
## alpha_gp_trend_x2_,
## rho_gp_trend_x2_[1]))
## .* z_gp_trend_x2_;
##
## // latent process linear predictors
## trend_mus = X_trend * b_trend;
##
## // derived latent states
## LV[1] = trend_mus[ytimes_trend[1, 1 : n_lv]] + error[1];
## epsilon[1] = error[1];
## for (i in 2 : n) {
## // lagged error ma process
## epsilon[i] = theta * error[i - 1];
##
## // full ARMA process
## LV[i] = trend_mus[ytimes_trend[i, 1 : n_lv]]
## + ar1 .* (LV[i - 1] - trend_mus[ytimes_trend[i - 1, 1 : n_lv]])
## + epsilon[i] + error[i];
## }
## L_Sigma = diag_pre_multiply(sigma, L_Omega);
## Sigma = multiply_lower_tri_self_transpose(L_Sigma);
## lv_coefs = Z;
## for (i in 1 : n) {
## for (s in 1 : n_series) {
## trend[i, s] = dot_product(lv_coefs[s, : ], LV[i, : ]);
## }
## }
## }
## model {
## // prior for random effect population variances
## sigma_raw ~ student_t(3, 0, 2.5);
##
## // prior for random effect population means
## mu_raw ~ std_normal();
##
## // prior for (Intercept)...
## b_raw[1] ~ student_t(3, 0, 2.5);
##
## // prior for x1B...
## b_raw[2] ~ student_t(3, 0, 2);
##
## // prior (non-centred) for s(series)...
## b_raw[3 : 6] ~ std_normal();
##
## // prior (non-centred) for s(x0,series)...
## b_raw[7 : 10] ~ std_normal();
##
## // priors for AR parameters
## ar1 ~ std_normal();
##
## // priors for latent state SD parameters
## sigma ~ student_t(3, 0, 2.5);
##
## // dynamic process models
##
## // prior for (Intercept)_trend...
## b_raw_trend[1] ~ student_t(3, 0, 2);
##
## // prior for te(x3,x4)_trend...
## b_raw_trend[22 : 45] ~ multi_normal_prec(zero_trend[22 : 45],
## S_trend2[1 : 24, 1 : 24]
## * lambda_trend[3]
## + S_trend2[1 : 24, 25 : 48]
## * lambda_trend[4]
## + S_trend2[1 : 24, 49 : 72]
## * lambda_trend[5]);
##
## // prior for gp(x2)_trend...
## z_gp_trend_x2_ ~ std_normal();
## alpha_gp_trend_x2_ ~ student_t(3, 0, 2.5);
## rho_gp_trend_x2_[1] ~ inv_gamma(1.494197, 0.056607);
## b_raw_trend[b_trend_idx_gp_x2_] ~ std_normal();
## lambda_trend ~ normal(5, 30);
##
## // contemporaneous errors
## L_Omega ~ lkj_corr_cholesky(2);
## for (i in 1 : n) {
## error[i] ~ multi_normal_cholesky(trend_zeros, L_Sigma);
## }
##
## // ma coefficients
## for (i in 1 : n_lv) {
## for (j in 1 : n_lv) {
## if (i != j) {
## theta[i, j] ~ normal(0, 0.2);
## }
## }
## }
## {
## // likelihood functions
## vector[n_nonmissing] flat_trends;
## flat_trends = to_vector(trend)[obs_ind];
## flat_ys ~ poisson_log_glm(append_col(flat_xs, flat_trends), 0.0,
## append_row(b, 1.0));
## }
## }
## generated quantities {
## vector[total_obs] eta;
## matrix[n, n_series] mus;
## vector[n_sp_trend] rho_trend;
## vector[n_lv] penalty;
## array[n, n_series] int ypred;
## penalty = 1.0 / (sigma .* sigma);
## rho_trend = log(lambda_trend);
##
## // posterior predictions
## eta = X * b;
## for (s in 1 : n_series) {
## mus[1 : n, s] = eta[ytimes[1 : n, s]] + trend[1 : n, s];
## ypred[1 : n, s] = poisson_log_rng(mus[1 : n, s]);
## }
## }
```
]
---
## Workflow
Fit models that can include splines, GPs, and multivariate dynamic processes to sets of time series; use informative priors for effective regularization
Use posterior predictive checks and Randomized Quantile (Dunn-Smyth) residuals to assess model failures
Use `marginaleffects` 📦 to generate interpretable (and reportable) model predictions
Produce probabilistic forecasts
Evaluate forecast distributions using proper scoring rules
---
class: middle center big-subsection
# [`?mvgam`](https://nicholasjclark.github.io/mvgam/reference/mvgam.html#details)
---
background-image: url('./resources/mvgam_cheatsheet.png')
background-size: contain
---
class: inverse middle center big-subsection
# Live code examples
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script src="macros.js"></script>
<script>var slideshow = remark.create({
"navigation": {
"scroll": false
},
"highlightStyle": "github",
"highlightLines": true,
"countIncrementalSlides": false,
"ratio": "16:9"
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
// add `data-at-shortcutkeys` attribute to <body> to resolve conflicts with JAWS
// screen reader (see PR #262)
(function(d) {
let res = {};
d.querySelectorAll('.remark-help-content table tr').forEach(tr => {
const t = tr.querySelector('td:nth-child(2)').innerText;
tr.querySelectorAll('td:first-child .key').forEach(key => {
const k = key.innerText;
if (/^[a-z]$/.test(k)) res[k] = t; // must be a single letter (key)
});
});
d.body.setAttribute('data-at-shortcutkeys', JSON.stringify(res));
})(document);
(function() {
"use strict"
// Replace <script> tags in slides area to make them executable
var scripts = document.querySelectorAll(
'.remark-slides-area .remark-slide-container script'
);
if (!scripts.length) return;
for (var i = 0; i < scripts.length; i++) {
var s = document.createElement('script');
var code = document.createTextNode(scripts[i].textContent);
s.appendChild(code);
var scriptAttrs = scripts[i].attributes;
for (var j = 0; j < scriptAttrs.length; j++) {
s.setAttribute(scriptAttrs[j].name, scriptAttrs[j].value);
}
scripts[i].parentElement.replaceChild(s, scripts[i]);
}
})();
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
// adds .remark-code-has-line-highlighted class to <pre> parent elements
// of code chunks containing highlighted lines with class .remark-code-line-highlighted
(function(d) {
const hlines = d.querySelectorAll('.remark-code-line-highlighted');
const preParents = [];
const findPreParent = function(line, p = 0) {
if (p > 1) return null; // traverse up no further than grandparent
const el = line.parentElement;
return el.tagName === "PRE" ? el : findPreParent(el, ++p);
};
for (let line of hlines) {
let pre = findPreParent(line);
if (pre && !preParents.includes(pre)) preParents.push(pre);
}
preParents.forEach(p => p.classList.add("remark-code-has-line-highlighted"));
})(document);</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>