-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDMCubeRun.py
146 lines (129 loc) · 5.9 KB
/
DDMCubeRun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# DDMCubeRun.py
# Created by nicain on 11/1/09.
# Copyright (c) 2009 __MyCompanyName__. All rights reserved.
# Run from command line:
# python DDMCubeRun.py build_ext --inplace
# Compile DDMCube.pyx package
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
setup(cmdclass = {'build_ext': build_ext},
ext_modules = [Extension("DDMCube", ['DDMCube.pyx'],language="c++")])
# Import remaining python packages:
import sys
try: import DDMCube
except: sys.exit(-1)
import scipy, random, time, os, pickle, uuid, analysisTools
from subprocess import Popen, PIPE
################################################################################
######################## Dashboard: ########################
################################################################################
# Define job settings:
settings={ # Example values:
'A':list(scipy.linspace(0,0,1)), # 0
'B':list(scipy.linspace(0,0,1)), # 0
'beta':list(scipy.linspace(0,.2,1)), # 0
'chop':list(scipy.linspace(0,25,1)), # 0
'dt':list(scipy.linspace(.5,.1,1)), # .02
'K':list(scipy.linspace(.05,.05,1)), # .05
'tMax':list(scipy.linspace(700,1000,1)), # 10000, or 400->600 in FD paradigm
'theta':list(scipy.linspace(5,15,20)), # 10
'xMean':list(scipy.linspace(3,6,1)), # 3 = 5%C
'xStd':list(scipy.linspace(12.8,15,1)), # 12.8
'xTau':list(scipy.linspace(20,25,1)), # 20
'yBegin':list(scipy.linspace(0,40,4)), # 40
'yTau':list(scipy.linspace(10,10,1)) # 0
}
# Define job parameters:
quickName = 'Test1'
FD=1
numberOfJobs = 5000
verbose = 1
runType = 'localCluster' # Options: 'singleCore', 'dualCore', 'localCluster'
# Set up saving directories
tempResultDir = '/simResults'
saveResultDir = '/savedResults'
################################################################################
######################## Main function: ########################
################################################################################
# Write a "settings" file:
myUUID = uuid.uuid4()
output = Popen(['git tag | tail -n 1'],stdout=PIPE, shell=True).communicate()
gitVersion = output[0][:-1]
totalLength = 1
for parameter in settings:
thisSetting = settings[parameter]
totalLength *= len(thisSetting)
fOutSet = open(os.getcwd() + saveResultDir + '/' + quickName + '_' + str(myUUID) + '.settings','w')
pickle.dump((settings, FD, numberOfJobs, gitVersion),fOutSet)
fOutSet.close()
# Display settings:
analysisTools.printSettings(quickName, saveResultDir)
# Run the job:
if runType == 'localCluster' or runType == 'dualCore':
import pp, math, ppUWTools
from time import sleep
# Define a helper routine to pass through with pp package:
def DDMOU_help(settings, FD, perLoc, tempResultDir, quickName, totalUUID, procNum):
try:
DDMCube.DDMOU(settings, FD, perLoc, tempResultDir, quickName, totalUUID)
return ' Sub-simulation ' + str(procNum + 1) + ' Complete'
except: sys.exit(-1)
if runType == 'dualCore':
ppservers=()
job_server = pp.Server(ppservers=ppservers)
numOfProc = job_server.get_ncpus()
else:
ppservers=("fig.amath.washington.edu:8080","lemon.amath.washington.edu:8080", "grape.amath.washington.edu:8080", "watermelon.amath.washington.edu:8080")
ppservers=("fig.amath.washington.edu:8080","lemon.amath.washington.edu:8080", "grape.amath.washington.edu:8080", "watermelon.amath.washington.edu:8080", "pineapple.amath.washington.edu:8080", "peach.amath.washington.edu:8080")
ppUWTools.startServers(ppservers = ppservers)
job_server = pp.Server(ppservers = ppservers)
sleep(10)
nodeDict = job_server.get_active_nodes()
print ' ', nodeDict
numOfProc = 0
for node in iter(nodeDict):
numOfProc += nodeDict[node]
print ' Starting job with ', str(numOfProc), ' processors:'
tBegin = time.mktime(time.localtime())
jobs = [(i+1,job_server.submit(DDMOU_help, (settings, FD, math.floor(numberOfJobs/numOfProc), tempResultDir, quickName, myUUID, i,), (), ("DDMCube",))) for i in range(numOfProc-1)]
jobs.append((numOfProc, job_server.submit(DDMOU_help, (settings, FD, numberOfJobs - math.floor(numberOfJobs/numOfProc)*(numOfProc-1), tempResultDir, quickName, myUUID, numOfProc - 1,), (), ("DDMCube",))))
for indexNum, job in jobs:
result = job()
print result
tEnd = time.mktime(time.localtime())
if runType == 'localCluster': ppUWTools.killAllServers(ppservers = ppservers)
elif runType == 'singleCore':
tBegin = time.mktime(time.localtime())
DDMCube.DDMOU(settings, FD, numberOfJobs, tempResultDir, quickName, myUUID)
tEnd = time.mktime(time.localtime())
else:
print 'Unrecognized runType option. Exiting...'
sys.exit(-1)
# Collect results:
resultsArray = scipy.zeros(totalLength, dtype=float)
crossTimesArray = scipy.zeros(totalLength, dtype=float)
for root, dirs, files in os.walk('./' + tempResultDir):
for name in files:
currQuickName, currTotalID, ID, junk = name.split('_')
if currQuickName == quickName and currTotalID == str(myUUID):
fIn = open(os.path.join(root, name),'r')
currArray = pickle.load(fIn)
crossTimesArray += currArray[0]
resultsArray += currArray[1]
os.remove(os.path.join(root, name))
crossTimesArray = crossTimesArray/numberOfJobs
resultsArray = resultsArray/numberOfJobs
# Reshape results and save to output:
params = settings.keys()
params.sort()
newDims = [len(settings[parameter]) for parameter in params]
crossTimesArray = scipy.reshape(crossTimesArray,newDims)
resultsArray = scipy.reshape(resultsArray,newDims)
fOut = open(os.getcwd() + saveResultDir + '/' + quickName + '_' + str(myUUID) + '.dat','w')
pickle.dump((crossTimesArray, resultsArray, params),fOut)
# Display Computation Time:
print 'Total Computation Time: ', time.strftime("H:%H M:%M S:%S",time.gmtime(tEnd - tBegin))
if numberOfJobs < 1000:
for NN in [2000,5000]: print ' Time to complete ' + str(NN) + ' sims: ', time.strftime("H:%H M:%M S:%S",time.gmtime(NN*totalLength*(tEnd - tBegin)/(totalLength*numberOfJobs)))
job_server.print_stats()