diff --git a/docs/source/conf.py b/docs/source/conf.py index 791d374..21d6681 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -26,8 +26,8 @@ author = 'Qing Yu' # The full version, including alpha/beta/rc tags -release = '0.5.2' -version = '0.5.2' +release = '0.5.3' +version = '0.5.3' html_logo = "_static/logo-wordmark-light.png" html_favicon = '_static/logo2.ico' # -- General configuration --------------------------------------------------- diff --git a/setup.py b/setup.py index 456214c..c121a20 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name="transbigdata", - version="0.5.2", + version="0.5.3", author="Qing Yu", author_email="qingyu0815@foxmail.com", description="A Python package developed for transportation spatio-temporal big data processing and analysis.", diff --git a/src/test.ipynb b/src/test.ipynb new file mode 100644 index 0000000..0f08952 --- /dev/null +++ b/src/test.ipynb @@ -0,0 +1,148 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import transbigdata as tbd\n", + "import pandas as pd\n", + "\n", + "data = pd.DataFrame([\n", + " [34745, '20:27:43', 113.80684699999999, 22.623248999999998, 1, 27],\n", + " [34745, '20:24:07', 113.809898, 22.627399, 0, 0],\n", + " [34745, '20:24:27', 113.809898, 22.627399, 1, 0],\n", + " [34745, '20:22:07', 113.811348, 22.628067, 1, 0],\n", + " [34745, '20:10:06', 113.81988500000001,\n", + " 22.6478, 1, 54],\n", + " [34745, '19:59:48', 113.820213,\n", + " 22.674967000000002, 0, 23],\n", + " [34745, '20:11:06', 113.82048, 22.6423, 0, 57],\n", + " [34745, '20:13:46', 113.82676699999999,\n", + " 22.630899, 0, 66],\n", + " [34745, '19:43:18', 114.828217, 22.7069, 0, 62],\n", + " [34745, '19:42:18', 113.83161899999999,\n", + " 22.716998999999998, 0, 69],\n", + " [22233, '14:41:40', 113.878571, 22.571199, 0, 0],\n", + " [22233, '14:42:00', 113.879135, 22.571617, 0, 7],\n", + " [22233, '14:45:40', 113.886253, 22.573217, 0, 25],\n", + " [22233, '14:49:00', 113.8899,\n", + " 22.56956700000001, 0, 0],\n", + " [22233, '14:55:15', 113.91093400000001,\n", + " 22.552383, 1, 60],\n", + " [22233, '19:02:12', 113.927116,\n", + " 22.543948999999998, 1, 41],\n", + " [22233, '14:32:47', 113.92831399999999,\n", + " 22.556867999999998, 1, 57],\n", + " [22233, '14:57:35', 113.934036, 22.555267, 1, 65],\n", + " [22233, '20:54:11', 113.942467, 22.507566, 0, 21],\n", + " [22233, '18:51:30', 113.964569, 22.541849, 0, 0]],\n", + " columns=['Vehicleid',\n", + " 'Time',\n", + " 'slon',\n", + " 'slat',\n", + " 'OpenStatus',\n", + " 'Speed'])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Amount of data\n", + "-----------------\n", + "Total number of data items: 20\n", + "Total number of individuals: 2\n", + "Data volume of individuals(Mean): 10.0\n", + "Data volume of individuals(Upper quartile): 10.0\n", + "Data volume of individuals(Median): 10.0\n", + "Data volume of individuals(Lower quartile): 10.0\n", + "\n", + "Data time period\n", + "-----------------\n", + "Start time: 14:32:47\n", + "End time: 20:54:11\n", + "\n", + "Sampling interval\n", + "-----------------\n", + "Mean: 1422.7222 s\n", + "Upper quartile: 596.75 s\n", + "Median: 210.0 s\n", + "Lower quartile: 125.0 s\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACHcAAAM1CAYAAADwgo81AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAC4jAAAuIwF4pT92AAD4J0lEQVR4nOzdd5jdVZ0/8PfJpJJQEkoIEHpPQhURUbBgAxWx/KxrWXsv67rq2gvqunasu5a1K0pTrIiFpgjSEnqvoRNCSJ/z+2MmcjPcm5lJZu601+t55pnv95zz/dzP3ASS57nvnFNqrQEAAAAAAAAAYHgaN9QNAAAAAAAAAADQmnAHAAAAAAAAAMAwJtwBAAAAAAAAADCMCXcAAAAAAAAAAAxjwh0AAAAAAAAAAMOYcAcAAAAAAAAAwDAm3AEAAAAAAAAAMIwJdwAAAAAAAAAADGPCHQAAAAAAAAAAw5hwBwAAAAAAAADAMCbcAQAAAAAAAAAwjAl3AAAAAAAAAAAMY8IdAAAAAAAAAADDmHAHAAAAAAAAAMAwJtwBAAAAAAAAADCMCXcAAAAAAAAAAAxjwh0AAAAAAAAAAMOYcAcAAAAAAAAAwDAm3AEAAAAAAAAAMIwJdwAAAAAAAAAADGPCHQAAAAAAAAAAw5hwBwAAAAAAAADAMCbcAQAAAAAAAAAwjAl3AAAAAAAAAAAMY8IdAAAAAAAAAADDmHAHAAAAAAAAAMAwNn6oGwDWTyll0ySHNwzdlGTFELUDAAAAAAAAMJpNTDK74f7PtdZF7Xpx4Q4YuQ5PcvJQNwEAAAAAAAAwBh2d5JR2vZhjWQAAAAAAAAAAhjHhDgAAAAAAAACAYcyxLDBy3dR4c9JJJ2XXXXcdql4AAAAAAAAARq2rr746z3rWsxqHbmqxdFAId8DItaLxZtddd82cOXOGqhcAAAAAAACAsWRF70sGjmNZAAAAAAAAAACGMeEOAAAAAAAAAIBhTLgDAAAAAAAAAGAYE+4AAAAAAAAAABjGhDsAAAAAAAAAAIYx4Q4AAAAAAAAAgGFMuAMAAAAAAAAAYBgT7gAAAAAAAAAAGMaEOwAAAAAAAAAAhjHhDgAAAAAAAACAYUy4AwAAAAAAAABgGBPuAAAAAAAAAAAYxoQ7AAAAAAAAAACGMeEOAAAAAAAAAIBhTLgDAAAAAAAAAGAYE+4YAqWU3Uspny6lnFdKubeUsryUcmMp5YxSyjtLKVu3oYdxpZRnlFJ+VEq5tpSypJSyuJRyeSnlZ6WUZ5VSJmxA/ceVUr7VXW9xKeXBUspVpZRTSykvKaVstAG1DyilfLmUcnEpZVEpZVkp5bpSyh9KKa8rpWy2vrXX8Zr7lVJWlFJq99eOA/0aAAAAAAAAANBMqbUOdQ9jRillfJJjk/xb1h2sWZrkHbXWrw1SH7sm+X6Sg3tZOj/JC2ut8/tRe2aSbyU5spelNyV5ca31jH7UnpbkuCQv62XpPUleVWs9sa+1e3ndSUnOSzK3YXinWuv1A1F/fZVS5qTr1yhJMn/+/MyZM2cIOwIAAAAAAAAYnRYsWJC5cxs/Ms7cWuuCdr2+nTvapDvY8bMk/57e3/cpSb5aSvncIPQxJ8lZ6T3YkXSFGc4tpTyqj7W3SXJGeg92JMnsJH8spTy7j7U3TvL79B7sSJIZSU4opby1L7X74CNZO9gBAAAAAAAAAG0j3NE+H09ydMP97Ulen66Qw5Qke6VrV48VDWveVkp5xUA10B2QOCnJVg3DpyV5UpLpSTZLckS6QhRrTElyYndwY121xyf5aZLdGobPT/KsJFskmZbk0Ul+0jDfkeS7pZR5fWj/f5I0hkyuTvKSJFsn2SjJ/km+mqRxK5rPlFKe1IfaLZVSDk3yzg2pAQAAAAAAAAAbQrijDbrDC40BgWuT7Fdr/Vqt9eZa67Ja6+W11v9McniSJQ1rP1NK2XSAWvlAkl0b7r+c5Mm11tNqrffVWhfVWv+Q5ClJ/rth3dZJPtZL7dcmObTh/uQkh9RaT6613l1rXVJrPafW+oIkb25YNzXJ59dVuJRyVJLnNwz9Lcn+tdYf1Fpvr7UurbVeWGt9Q5JnJ1ndva4jyXHdwZN+K6VMTfJ/8d8JAAAAAAAAAEPIh9bt8cE89F53JnlurXVhs4W11r8madytY3oGYOeIUsoWWTtUcX6St9Raa8+13WPvSnJqw/BLSyl7tKg9Icn7GoZuTvLiWuvKZutrrccl+UrD0BNKKU9cR/sfbrhekuQ5tdYHWtQ+Kcl7GoZ2T9+Ocmnm00l2Wc9nAQAAAAAAAGBACHcMslLKzKx9HMuptdYL1vVMrfX4JOc2DP1rKaVsYCsvTTKp4f7YWmvnOnpYE/BYoyPJy1ssf0a6dvdY43O11iUt1q7x/iRLG+5f1WxRKeWAJAc2DH2r1npLL7U/l6RxTdPa61JKeXK6js1JugI5v+tvDQAAAAAAAAAYCMIdg+/IJI3Hgvy4j8/9sOF6m6x95Mn6aAyYPJC1d+VoqtZ6aZILG4ae24faSfKTPtS+J8lvG4aeXkqZ3Ifavb5/tdZVSY5vGDq4lDK7t+fWKKVsluSbDUOfSXJOX58HAAAAAAAAgIE0vvclbKAn9Lj/Yx+f+1OP+yOTnLk+DXSHJg5pGDq71rq8H33s1329ayll91rrlT3WNP6MV/ZhZ43G2s/qvp6W5LA8fIeMxtoPZu0dTXqr/bbu65LkaUm+0cdnv5Rku+7ry9K1y8h7Wi9nKKxa3ZkHV67Og8tXZ8mKVQ99X7EqS5avXvv7itXpKCXbbDYls2dMyXbTN8o2m03OpPEdQ/1jAAAAAAAAAPRKuGPw7dNwfUet9bY+Prcgyao89Gv0iA3oYa8kExruL+zHsz3XPiLJP8MdpZTpeSgIMRC1e4Y75jVcz+/elWN9a/ca7iilPDvJS7pvVyd5Wa11+YafisP6uHPx8lxw4735x4335cKb7s3N9y7NgytWZ8nyVVm+quWpQn1SSjJz48nZbvqUzJ6xUbabPqXrevpG2W76Rpm12eRM6LC5EQAAAAAAADD0hDsGUelKBOzRMHRVX5+tta4qpdyYZOfuod02oJU9e9z3uY8k1/a479nHoNUupcxKsul61r4pa4djen3/SilbJflaw9Cnaq1/78drsgFWrOrMZbfd/88wxwU33Zub7lk6aK9Xa7Lw/mVZeP+ynHfDvQ+bH1eSWZtOybbTp2TXrablsN22zGN32yJTJ/nfJgAAAAAAANBePqUcXNOTTGq4v7Wfzy/MQ+GO7da1sBezetz3p4+FPe579jEsa9daO0spdyTZpkXtZr6RZMvu60uSfLivr7ehuoMlW/a6cG27DEYv7bJw0bLuIMe9ueDG+3LJLYs2eDeOgdRZk1vuW5pb7luac6+7Jz/8242Z2DEuj9pl8zxxz63yxL22ynbTNxrqNgEAAAAAAIAxQLhjcG3V4/6efj7fuJ3A+FLKxrXWxW3uo+eWBjMGqnatdWUpZUmSqQNdu9u9eSjc0bP2WkopL0tydPftynQdx7Kin6+3Id6Q5INtfL22u3/Zypx68W0586q7csGN9+bWRcuGuqV+W7G6M3+58s785co788FTFmSPmRvniXt1BT32mz09HeMc3wMAAAAAAAAMPOGOwTWtx31/gxkP9LjfeD1qbGgfzXoYqNpr6q8JdwxG7TV61v6nUsrsJF9oGDq21npBP1+LJmqtOe+Ge/Pjc2/KqZfcmmUrh8/OHAPhitsX54rbF+crf7om0zeakMfvsVWeuNfMPHb3LbLJ5AlD3R4AAAAAAAAwSgh3DK5JPe5X9vP5nuvX99PiDemjtx4G8mdsZ+0kSSmlJPl2kk27hy5I8vF+vg493P3A8pzwj1vy47/fmGvuXNLW1548YVymThyfjSZ1dH2f2JGNJo7PkhWrcvO9S3Pn4uWD8rr3PrgyJ1xwS0644JaMH1dy8M4z8oQ9Z+bJe8/M7BmObwEAAAAAAADWn3DH4Orocd/fbQt6rh83BH301sNA/oyDWTullFJrrT3WvDHJE7uvV6TrOJb+hkgGwleSHN/PZ3ZJcvIg9LJeOjtrzrj6rvzk7zfm95fenpWre77V62+76VOy//bTs9/szbLVxpMytTu4MXVSV3hjzfeNJo7v9WiUZStX5+Z7l+amex/Mzfcuzc33Ppib7+n6ftO9S3PPkg0/jWdVZ81ZV9+ds66+Ox/95aU5Yq+Zef3jds6BO6zzdCAAAAAAAACApoQ7BteqHvc9wwq96fnrs75bDmxIH731MJA/42DWXtkz2FFK2S3JpxqGPlJrvaSfrzEgaq13JLmjP890bToy9G69b2mOP+/m/PS8m3LLfUs3uN7kCeOyz3ab5YDtp2f/7TfL/ttvlq02njwAna6p35Fdt5qWXbfqeepPlyXLV+WW+5bmpnu6wh/zb1mUP15xZ+56YP13/Djtsttz2mW355E7zsjrHrdzHr/HVsPm1w8AAAAAAAAY/oQ7BteDPe77+wl1z/Xr++nyhvTRWw8D+TO2rXYppSPJ/yVZc17G35N8sp/1x6yVqzvzh8tuz4//flP+fOWdedh+KP2w4+YbZf/tp+eA7TfL/ttPzx5bb5wJHeu7Sc2GmzppfHafuXF2n7nxP8c6O2suuWVR/nDZ7fnD5Xdkwa33r1ftc6+/J+d+557sMXPjvPbwnfOMfbcZ0p8VAAAAAAAAGBmEOwbXPT3uN+nn843rO5PcNwR99Fx79wDWTpKNG64Hunbj+p6135XkkO7r5ek6jmV1P+uPOYuXrcz//OXa/PDcG3PXA+t3fMmWG0/KMftvm4N3mpH9Zm+WzadNGuAuB964cSX7zt4s+87eLO948h65bdHSnH75HTn9sjty5tV3Zfmq/p0YdMXti/OOn16Uz/zuyrzqsTvl+QfNzkYT/e8YAAAAAAAAaM6niYPr9iQ1yZrzF7bs5/MzG67v3oDwwcIe9/3pY2aP+55Hh6x37VLKjCQTBqN2t8be/1m7lLJPkg81zH2g1npZP2uPKatWd+ZHf78pn//9lbl7Sf9DHeNK8oQ9t8rzD9o+j99jy4wf4btVzNp0Sl588A558cE7ZOmK1Tn7mrty2mV35PTLb8/t9/d9g51b7luaD//i0nzxD1flZY/eMS87ZMdMnzpxEDsHAAAAAAAARiLhjkFUa11eSrktyTbdQ9v1s0Tj+us2oJWez/anj55re9YazNo3pGvHkjVJgD7XLqVskrV3BWms/ewkjZ+gf6qU8qm+1l5Tr5TSeL9TrfX6ftYY9mqtOf3yO3Lsry7LNXcu6ffzs2dMyfMfMTvPPXB2tt60v6fqjAxTJnbkiXvNzBP3mpla52bBrffnD5fdkV/Pvy2XL1zcpxr3Prgynz/tqnz9z9fm+QfNzqseu1O2m75R7w8CAAAAAAAAY4Jwx+Cbn4fCHbuXUsbVWns9w6GUslWS6T3qbEgPjfbqx7N79lLr2iQPJlnzSfSA1e4Ox1ydZPeBrk3vFty6KB8/9bKcfU3PE23WbWLHuDx5zsy88JHb55CdN8+4caX3h0aJUkrmbrtp5m67ad7yxF1zxlV35at/uibnXNu393DpytX5ztnX53t/vSFH77tNXve4XbL7zI17fxAAAAAAAAAY1YQ7Bt/fkjy5+3pqkr3Tt6DBwT3u/7q+DdRabyul3JRkdvfQQf14vLGPFUn+0aP26lLK+Uke2z30iFJKqbXWftZOmv+Mf8tD4Y7dSymb1loXDVBtmli4aFn++3dX5Of/uDl9+lXstttW0/KCR26fY/bfNjMcLZJSSg7bfcsctvuWueim+/K1P1+T3yxY2Kf3dHVnzQkX3JITL7wl//KoHfLvT9kjG0+e0PuDAAAAAAAAwKg0rvclbKDf9bg/qo/PPb3H/e8HsI8DSimzenuglDI5yRMbhs6utTY7m6Ox9hZJHtnHnhrfi+trrVf1Untckqf2sXbj+7c0yZlrbmqtH6q1lv58Jflwj/o79VhzfR/7GraWLF+Vz/7uijzuv/+Yn53ft2DHRhM78vxHzM4Jb3h0fvf2w/LKx+wk2NHEvrM3y1dfcmBOe8fhecFBszOxo2//6601+e45N+SIz/45v5l/W/qWmQIAAAAAAABGG+GOwXd2kpsa7l9TSlnnp9+llC2SvLBh6MwBCA/8pPElkryxD8+8LMmmDfffb7Hupz3u39xb4VLKU5Ls0Yfav0jXsS9rvKkPtfdKckTD0M9rrUt7e26sWt1Z8+Nzb8zj/vtP+eLpV2fZyl5PDcqk8ePyxsfvkr++94n51HP3yQHbT08pY+f4lfW1y5bT8snn7JMz/uPxee3hO2fapL5tnnT7/cvzuu//I6/+7nm59T6/lQEAAAAAAGCsEe4YZLXWziRfbhjaOclnW60vpYxL8p0kGzcMf2EAWjktyaUN9+8spRy6jj72SPLJhqHbk/y42dpa65VJftMw9KJSyvPWUXurJF9vGFrW476x9qIk320Yekwp5Z3rqL1Rku9l7d/bX2y1fqz785V35sgvnJF3n3BJ7ly8vE/PPHv/bfPHdz4u//6UPbOJo0LWy8xNJuc9T9srZ737CXnXU/fIFtMm9em50y67I0d89s/55pnXZXWnXTwAAAAAAABgrBDuaI/jktzYcP/GUspx3cee/FMpZbMkx2ft40rOrLX+rFnRUsqOpZTa+NWqgdp1nsO7G4YmJflFKeWZTeoemq4wyGYNw+9rcSTLGu9NsmpNiSTfLaW8qkntvZKcnmSHhuHP1FpvXkftjyW5v+H+U6WU95VSOnrU3jZdIZMDG4Z/UGv9+zpqj0lX3b44L/3WuXnZt87NFbcv7tMzB+80I79402Py2efvl202mzLIHY4Nm06ZkDc8btec+R+Pz7HHzMsOm2/U6zMPrlidj/7y0jzry2dl/i2L2tAlAAAAAAAAMNRK12f+DLbuwMTvkzR+Kn5Xkl8mWZiusMMzkkxrmL87yYG11hta1NwxyXWNY7XWdZ6NUUr5Yh5+bMr5Sc5KsjpdwYjDesz/rNbacieOhtrvSPKZHsNXJPlDuo5WmZvkyVk7VHROksNrrSt7qf28dO0c0vjsTUl+neTeJLsnOTJdoZU1rknX+7fBn4CXUj6U5IMNQzsNwFE5G6SUMifJ/DX38+fPz5w5c9b5TGdnzbfOui7/9ZsrsmJ178evJMnOW0zNu5+2Z56090xHrwyy1Z01v7rktnzy15fnlj4cvzKuJK84dKe840m7Z2ofj3gBAAAAAAAA+m/BggWZO3du49DcWuuCdr2+TwPbpNZ6VvcuGSfkoSNXtkjy8haPLEzy1FbBjg3w1iQdSd7QMHZg1t7totFJSV7Sl8K11s+WUiYm+XgeCmHs0f3VzNlJjuot2NFd+/junU7+N8nE7uHZSV7T4pErkjx5IIIdo8Udi5fl3356Uc646q4+rZ++0YS87Yjd86KDt8+EDpv8tEPHuJJn7LtNnrDnVvnc76/Mt866Lus6faWzJt8887r8+pLb8pGj5+aIvWe2r1kAAAAAAACgbXxi20a11tOS7JnkB0mWtVj2YJKvJZlTa71oEHqotdY3JnlakgvXsfSaJK+qtR5Ta13ej/qfTHJIkr8kafWx9G1J3pWuHTvu60ft7yXZJ127naxqsey+JJ9MckCt9cYWa8ac0y+/PU/7/Bl9CnZM7BiX1x62c/7074/Pyx69o2DHEJg6aXze9/S9c8qbHpN5227a6/pbFy3Lq757Xl7//fNz+/2t/tcCAAAAAAAAjFSOZRkipZRpSR6XZPsk05Pcn67dJs6ptS5uYx+7JDk4yawkE5Lcma5jWi6qG/ibo5SyTZLHJNkmXcfR3JPkoiTn1VpbhTP6WnvzJIcn2TZdO6Hcl2RBkr/VWsfEp9t9OZZl2crV+cSvLsv/ndO3DWCese82eddT9sjsGRsNaK+sv9WdNf939vX5zO+uyJIVq3tdP23S+LzrqXvkxQfvkI5xjtEBAAAAAACAgTDUx7IId8AI1Vu444qFi/OWH12QK27vPSt04A7T876j9sr+208flF7ZcLfetzQfOHlBTrvs9j6t33/7zfLFF+wvqAMAAAAAAAADYKjDHc5bgFGm1q6dHp5x3Jm9BjumTOjIp54zLz973SGCHcPcNptNyf++7BH52ksOzNabTO51/QU33pdnHHdm/nzlnW3oDgAAAAAAABhMwh0witz1wPK88v/OywdPWZAVqzrXuXbetpvm1Lc8Js8/aPuU4viOkeKpc7fO799xWF7+6B3T2y/bfQ+uzMu/fW6+9Ier0tlplyYAAAAAAAAYqYQ7YJT4+/X35KmfPyOnX35Hr2tfe/jO+fnrH52dt5zWhs4YaBtPnpAPPXNOTnzDodlr1ibrXFtr8pnfX5lXf/e8LFq6sk0dAgAAAAAAAANJuANGifeecEnuemD5OtdstfGkfP+VB+c9T9srE8f7z3+k22/2ZvnFmw7Ne4/cM1MmdKxz7R8uvyPPPO7MXHbb/W3qDgAAAAAAABgoPt2FMeJJe8/Mb952WB6z2xZD3QoDaHzHuLzmsF3yu7cfloN3mrHOtTfc/WCO+cpZOfGCm9vUHQAAAAAAADAQhDtglJs8YVw+9qy5+ca/HJgZUycOdTsMktkzNsoPXnVwXnPYzutct2xlZ97+k4vygZPnZ8WqzjZ1BwAAAAAAAGwI4Q4YxfaatUl+8abH5CWP2iGllKFuh0E2vmNc3nvkXvnKiw/I1InrPqblu+fckBd845wsXLSsTd0BAAAAAAAA60u4A0apVz5mp5z0xkdnt5kbD3UrtNmR82bl5Dcdml22nLrOdf+48b48/Utn5Jxr7m5TZwAAAAAAAMD6EO6AUWaLaZPynVcclPc/fe9MGr/u3RsYvXbdauOc/KbH5Mh5W69z3V0PrMhLvvm3fOMv16TW2qbuAAAAAAAAgP4Q7oBR5PF7bJnfvO2xedweWw11KwwD0yaNz5dfdED+88i90jGu9bE8qztrjv3V5XnjD/+RB5avamOHAAAAAAAAQF8Id8Ao8drDd863Xn5Qtpg2aahbYRgppeTVh+2c77/y4GwxbeI61/7qkoU5+rgzc/Udi9vUHQAAAAAAANAXwh0wSjz3wNkppfXuDIxth+yyeX755sfmgO03W+e6a+5ckmd9+ez89dq729MYAAAAAAAA0CvhDoAxYutNJ+fHrzkkLztkh3Wue2D5qrzsW+fmtEtvb1NnAAAAAAAAwLoIdwCMIRPHj8uHj56bzz1/30ye0PqPgOWrOvPa75+fn59/cxu7AwAAAAAAAJoR7gAYg47Zf7uc+IZDs8PmG7Vcs7qz5t+OvyjfPPO6NnYGAAAAAAAA9CTcATBG7TVrk5zypsfkiXtutc51H/3lpfnM765IrbVNnQEAAAAAAACNhDsAxrBNp0zIN176iLzgoNnrXPel06/OB05ekM5OAQ8AAAAAAABoN+EOgDGuY1zJJ549L687fJd1rvveX2/IW39yYVas6mxTZwAAAAAAAEAi3AFAklJK3v20PfOep+25znW/uOjWvPq75+XBFava1BkAAAAAAAAg3AHAP7328F3yqefMy7jSes2fr7wz//LNc7PowZXtawwAAAAAAADGMOEOANby/IO2z1defEAmdrT+I+L8G+7N879xTu64f1kbOwMAAAAAAICxSbgDgId56txZ+fYrDsrUiR0t11y+cHGe+7VzcuPdD7axMwAAAAAAABh7hDsAaOrQXbfID1/9qEzfaELLNTfe82Ce87Wzc9lt97exMwAAAAAAABhbhDsAaGnf2Zvl+Ncdkq03mdxyzZ2Ll+f5Xz8n511/Txs7AwAAAAAAgLFDuAOAddp1q43zs9cfkp23mNpyzf3LVuUl3/xb/nTFHW3sDAAAAAAAAMYG4Q4AerXd9I3y09cdkrnbbtJyzbKVnXnN987PWVff1cbOAAAAAAAAYPQT7gCgT7aYNik/evWjcvBOM1quWbGqM6/+7nk5/4Z729gZAAAAAAAAjG7CHQD02caTJ+T//vWROWKvmS3XPLhidV7x7XOz4NZFbewMAAAAAAAARi/hDgD6ZfKEjnztJQfk2Qds23LN/ctW5aXfPDfX3PlAGzsDAAAAAACA0Um4A4B+G98xLv/93H3zooO3b7nm7iUr8pL//VtuuufBNnYGAAAAAAAAo49wBwDrZdy4ko8dPTfP2m+blmtuW7QsL/nm33LH/cva2BkAAAAAAACMLsIdAKy3ceNKPv28ffOkvWe2XHPD3Q/mJd/8W+5dsqKNnQEAAAAAAMDoIdwBwAaZ0DEuX3rh/nnMrlu0XHPl7Q/kZd8+N4uXrWxjZwAAAAAAADA6CHcAsMEmT+jIN156YA7cYXrLNRffvCiv/L/zsnTF6jZ2BgAAAAAAACOfcAcAA2KjiePzrZcflDnbbNJyzbnX3ZPXff/8rFjV2cbOAAAAAAAAYGQT7gBgwGw6ZUK++6+PzC5bTm255s9X3pm3/viCrFot4AEAAAAAAAB9IdwBwIDafNqk/OBVj8rsGVNarvn1/IX5j59fks7O2sbOAAAAAAAAYGQS7gBgwG296eT84JWPylYbT2q55uf/uDkf/sWC1CrgAQAAAAAAAOsi3AHAoNh+843yg1cdnOkbTWi55v/OuSH//bsr2tgVAAAAAAAAjDzCHQAMmt1mbpzv/uvB2XjS+JZrvvzHa/KVP13dxq4AAAAAAABgZBHuAGBQzdtu03zrFQdl8oTWf+T812+uyA/+dkMbuwIAAAAAAICRQ7gDgEF30I4z8o1/eUQmdrT+Y+cDJy/In6+8s41dAQAAAAAAwMgg3AFAWxy2+5b54gv3T8e40nR+dWfNm37wj1yxcHGbOwMAAAAAAIDhTbgDgLZ56tyt8+nn7tNyfvHyVfnX7/w9dy5e3sauAAAAAAAAYHgT7gCgrZ59wHb56NFzWs7fct/SvOZ752XZytVt7AoAAAAAAACGL+EOANruXw7ZMa85bOeW8xfceF/eefxF6eysbewKAAAAAAAAhifhDgCGxH88dc88ae+ZLed/efFt+fxpV7axIwAAAAAAABiehDsAGBId40q+8IL9MmebTVqu+eLpV+fEC25uY1cAAAAAAAAw/Ah3ADBkNpo4Pt982UGZucmklmv+42eX5O/X39PGrgAAAAAAAGB4Ee4AYEhtvenkfPNlB2XKhI6m8ytWd+Y13z0vN9y9pM2dAQAAAAAAwPAg3AHAkJu77ab54gv3TynN5+99cGVe8Z2/Z9GDK9vbGAAAAAAAAAwDwh0ADAtP2ntm/vPIvVrOX3vnkrz+B+dn5erONnYFAAAAAAAAQ0+4A4Bh45WP2SkvfOT2LefPvubuvP+k+am1trErAAAAAAAAGFrCHQAMG6WUfOToOXnMrlu0XPPjv9+U/znj2jZ2BQAAAAAAAENLuAOAYWVCx7h8+cUHZNetprVc84lfX57fLljYxq4AAAAAAABg6Ah3ADDsbDplQr71soMyY+rEpvO1Jm/78YWZf8uiNncGAAAAAAAA7SfcAcCwtP3mG+Ub/3JgJnY0/6Nq6crVeeX//T23LVra5s4AAAAAAACgvYQ7ABi2HrHjjPzXc/dpOX/7/cvzyu+clyXLV7WxKwAAAAAAAGgv4Q4AhrVn7b9t3vrE3VrOX3rb/XnXzy5OrbWNXQEAAAAAAED7CHcAMOy97Yjd8sx9t2k5f+olt+WbZ17Xxo4AAAAAAACgfYQ7ABj2Sin5r+fukwO236zlmk/8+vKce9097WsKAAAAAAAA2kS4A4ARYfKEjvzPSx+R2TOmNJ1f3Vnzxh/+I3fcv6zNnQEAAAAAAMDgEu4AYMTYfNqkfP0lj8ik8c3/+Lpz8fK88Yf/yMrVnW3uDAAAAAAAAAaPcAcAI8re22ySY4+Z13L+79ffm0/86vI2dgQAAAAAAACDS7gDgBHnOQdul5c8avuW898667r84qJb29gRAAAAAAAADB7hDgBGpPc/fe/sO3uzlvP/8fOLc9Xti9vXEAAAAAAAAAwS4Q4ARqRJ4zvy1RcfkBlTJzadf3DF6rz2++dn8bKVbe4MAAAAAAAABpZwBwAj1jabTcmXXrh/xpXm89feuSTv+tnFqbW2tzEAAAAAAAAYQMIdAIxoh+66Rf7tyXu0nP/1/IX5nzOubWNHAAAAAAAAMLCEOwAY8V5/+C550t4zW85/6jdX5Jxr7m5jRwAAAAAAADBwhDsAGPHGjSv5zP/bNztuvlHT+dWdNW/+0T+ycNGyNncGAAAAAAAAG064A4BRYZPJE/LVlxyYyROa/9F21wMr8sYf/iMrVnW2uTMAAAAAAADYMMIdAIwae83aJJ949ryW8+ffcG+O/dVlbewIAAAAAAAANpxwBwCjyjH7b5eXHrJDy/nvnH19Tr7wljZ2BAAAAAAAABtGuAOAUed9R+2d/bffrOX8u39+Sa5YuLh9DQEAAAAAAMAGEO4AYNSZOH5cvvLiA7L51IlN55euXJ3Xff/83L9sZZs7AwAAAAAAgP4T7gBgVJq16ZR86UX7Z1xpPn/dXUvyzp9elFprexsDAAAAAACAfhLuAGDUevQuW+RdT92z5fzvLr093z7r+vY1BAAAAAAAAOtBuAOAUe21h+2cp8yZ2XL+k7++PPNvWdTGjgAAAAAAAKB/hDsAGNVKKfn08/bNzltMbTq/YnVn3vKjC7Jk+ao2dwYAAAAAAAB9I9wBwKi3yeQJ+dq/HJgpEzqazl9715J86JQFbe4KAAAAAAAA+ka4A4AxYfeZG+dDz9y75fzx59+cky+8pY0dAQAAAAAAQN8IdwAwZvy/R8zOUfvMajn/vhPn58a7H2xjRwAAAAAAANA74Q4AxoxSSo49Zl62mz6l6fzi5avylh9fkJWrO9vcGQAAAAAAALQm3AHAmLLplAn5wgv2T8e40nT+wpvuy+d+f2WbuwIAAAAAAIDWhDsAGHMO3GF63vGk3VvOf/XP1+Ssq+9qY0cAAAAAAADQmnAHAGPS6w7fJYfsvHnTuVqTt//kwtz9wPI2dwUAAAAAAAAPJ9wBwJjUMa7kc8/fL9M3mtB0/o7Fy/PvP7s4tdY2dwYAAAAAAABrE+4AYMzaetPJ+fRz9205f/rld+TbZ13fvoYAAAAAAACgCeEOAMa0I/aemZc/eseW85/89eWZf8ui9jUEAAAAAAAAPQh3ADDmvftpe2bPrTduOrdidWfe8qMLsmT5qjZ3BQAAAAAAAF2EOwAY8yZP6MhxL9o/UyZ0NJ2/9q4l+fAvFrS5KwAAAAAAAOgi3AEASXbdauN86Jl7t5z/6Xk355SLbm1jRwAAAAAAANBFuAMAuv2/R8zOUfvMajn/nydckpvuebCNHQEAAAAAAIBwBwD8Uyklxx4zL9tuNqXp/OLlq/KWH1+Qlas729wZAAAAAAAAY5lwBwA02HTKhHzxhfulY1xpOn/Bjffl86dd2eauAAAAAAAAGMuEOwCghwN3mJG3H7Fby/mv/OmanH31XW3sCAAAAAAAgLFMuAMAmnj943bNo3ae0XSu1uRtP7kw9y5Z0eauAAAAAAAAGIuEOwCgiY5xJZ9//v7ZbKMJTefvWLw87z95fpu7AgAAAAAAYCwS7gCAFrbedHI+/dx9W87/8uLbcspFt7axIwAAAAAAAMYi4Q4AWIcn7T0zLztkh5bz7z9pfhYuWtbGjgAAAAAAABhrhDsAoBfvOXKv7LrVtKZzi5auzLt+fnFqrW3uCgAAAAAAgLFCuAMAejF5Qkc+9//2y/hxpen8X668M9//241t7goAAAAAAICxQrgDAPpg3nab5s1P2K3l/LGnXpbr7lrSxo4AAAAAAAAYK4Q7AKCP3vD4XbLvdps2nVu6cnX+7acXZtXqzjZ3BQAAAAAAwGgn3AEAfTShY1w++/z9Mml88z8+/3Hjffn6X65tc1cAAAAAAACMdsIdANAPu2w5Le952p4t5z/3+ysz/5ZFbewIAAAAAACA0U64AwD66aWH7JhDd9286dyqzpp/++lFWbZydZu7AgAAAAAAYLQS7gCAfho3ruTTz903G08e33T+itsX53O/v7LNXQEAAAAAADBaCXcAwHrYZrMp+cjRc1rOf+OMa/O3a+9uY0cAAAAAAACMVsIdALCenrXftnna3K2bztWa/NvxF+WB5ava3BUAAAAAAACjjXAHAKynUko+fsy8bDFtUtP5m+9dmo/98tI2dwUAAAAAAMBoI9wBABtgxtSJ+dRz5rWc//Hfb8ppl97exo4AAAAAAAAYbYQ7AGADPXGvmXnBQbNbzr/7hItz9wPL29gRAAAAAAAAo4lwBwAMgPc9fe/MnjGl6dxdD6zIf544P7XWNncFAAAAAADAaCDcAQADYNqk8fnM8/ZLKc3nf7NgYU668Jb2NgUAAAAAAMCoINwBAAPkkTvNyGseu3PL+Q+cvCC33re0jR0BAAAAAAAwGgh3AMAAevuTds8eMzduOrd42ar8+88uSmen41kAAAAAAADoO+EOABhAkyd05LPP3zcTOpqfz3LW1Xfnu+dc396mAAAAAAAAGNGEO4ZAKWX3UsqnSynnlVLuLaUsL6XcWEo5o5TyzlLK1m3oYVwp5RmllB+VUq4tpSwppSwupVxeSvlZKeVZpZQJG1D/caWUb3XXW1xKebCUclUp5dRSyktKKRttQO0DSilfLqVcXEpZVEpZVkq5rpTyh1LK60opm61n3fGllBeUUn7SXW9Jd+0bSik/L6W8eEPeE2DsmLPNpnnbEbu3nP/kby7PDXcvaWNHAAAAAAAAjGSlVlvDt0spZXySY5P8W9YdrFma5B211q8NUh+7Jvl+koN7WTo/yQtrrfP7UXtmkm8lObKXpTcleXGt9Yx+1J6W5LgkL+tl6T1JXlVrPbEftR+V5HtJdu1l6XVJXlprPbOvtQdLKWVOun6NkiTz58/PnDlzhrAjoNGq1Z35f18/J/+48b6m8wfvNCM/evWjMm5c8x0+AAAAAAAAGD4WLFiQuXPnNg7NrbUuaNfr27mjTbqDHT9L8u/p/X2fkuSrpZTPDUIfc5Kcld6DHUkyN8m53cGHvtTeJskZ6T3YkSSzk/yxlPLsPtbeOMnv03uwI0lmJDmhlPLWPtZ+Zrr67i3YkSQ7JflTKeUNfakNjF3jO8bls/9vv0yZ0NF0/m/X3ZMf/O2GNncFAAAAAADASCTc0T4fT3J0w/3tSV6frpDDlCR7pWtXjxUNa95WSnnFQDXQHZA4KclWDcOnJXlSkulJNktyRLpCFGtMSXJid3BjXbXHJ/lpkt0ahs9P8qwkWySZluTRSX7SMN+R5LullHl9aP9/kjSGTK5O8pIkWyfZKMn+Sb6apHErms+UUp7US99zu/se3zB8apInJtk0XT//fkm+kGR1Q99fLKU8oQ99A2PYjltMzXuO3LPl/Cd+fXluuufBNnYEAAAAAADASCTc0Qbd4YV3Ngxdm2S/WuvXaq0311qX1Vovr7X+Z5LDkyxpWPuZUsqmA9TKB7L27hRfTvLkWutptdb7aq2Laq1/SPKUJP/dsG7rJB/rpfZrkxzacH9ykkNqrSfXWu+utS6ptZ5Ta31Bkjc3rJua5PPrKlxKOSrJ8xuG/pZk/1rrD2qtt9dal9ZaL6y1viHJs7N2COO47uBJK19PMqnh/sO11qfXWk+vtd7f/WtzUa31bUmO6VH726WUievqHeAlB++Qg3ea0XTuwRWr8+4TLo4j0gAAAAAAAFgX4Y72+GAeeq87kzy31rqw2cJa61+TNO7WMT1rB0PWSylli6wdqjg/yVtqk08Uu8fela4dLNZ4aSlljxa1JyR5X8PQzUleXGtd2Wx9rfW4JF9pGHpCKeWJ62j/ww3XS5I8p9b6QIvaJyV5T8PQ7mlxlEsp5ZB07Sayxh9qrR9q1USt9RdJjmsY2j5r78YC8DDjxpX813P3yeQJzf/IPevqu/Ojc29qc1cAAAAAAACMJMIdg6yUMjNrBwBOrbVesK5naq3HJzm3YehfSyllA1t5adbeoeLYWmvnOnpYE/BYoyPJy1ssf0a6dvdY43O11iUt1q7x/iRLG+5f1WxRKeWAJAc2DH2r1npLL7U/l6RxTdPaSV7U4/6TvdRNkm/1uD+iD88AY9wOm0/Nu57S+niWY391WW65b2nLeQAAAAAAAMY24Y7Bd2SSxmNBftzH537YcL1N1j7yZH00BkweyNq7cjRVa700yYUNQ8/tQ+0k+Ukfat+T5LcNQ08vpUzuQ+1e379a66okxzcMHVxKmd1k6cEN1/cn+WNvtZNc2eN+5z48A5CXP3rHPGKH6U3nHli+Ku854RLHswAAAAAAANCUcMfge0KP+74ECJLkTz3uj1zfBrpDE4c0DJ1da12+Hn3sWkrZvcmaxp/xyj7srNGs9rQkh/VS+8GsvaNJX2uXJE9rsuZRSfZM8vwk76y1ru5D3Sl9fH2Ataw5nmXS+OZ/9P7lyjtz/Pk3t7krAAAAAAAARgLhjsG3T8P1HbXW2/r43IIkqxruH7EBPeyVZELD/YX9eLbn2rX6KKVMT7LdYNTuNq/hen73rhwDUrvW2llrvaLW+tNa6//0se4BPe6v6uNzANl5y2n5tyc3y8h1+egvL83CRcva2BEAAAAAAAAjgXDHICqllCR7NAz1OQjQHWK4sWFotw1oZc8e9/0JJFzb475nH4NWu5QyK8mm61n7pqwdjtmQ96/RO3vcnzxAdYEx4pWP2Tn7zd6s6dziZavy3hMdzwIAAAAAAMDahDsG1/Qkkxrub+3n8wsbrrdruap3s3rc96ePhT3ue/YxLGvXWjuT3LGO2v1SSplcSvlakqc2DJ9Va/3thtQFxp6OcSWffu4+mdjR/I/g0y+/Iyde0NfTrQAAAAAAABgLxg91A6PcVj3u7+nn8/c2XI8vpWxca13c5j7u7XE/Y6Bq11pXllKWJJk60LW73Ztkmxa116mU0pFkYpJd0hXoeGOSHRuWXJ/kOf3sZ12vt1WSLfv52C4D9fpAe+02c+O89Yjd8unfXtF0/sO/uDSP2XWLbLXJ5DZ3BgAAAAAAwHAk3DG4pvW4728w44Ee9xuvR40N7aNZDwNVe039NeGOwai9Rs/avfldkie0mPtlkjfUWm/vZ811eUOSDw5gPWCYe+1hO+c38xfmklsWPWxu0dKVed9J8/P1fzkwXSd8AQAAAAAAMJY5lmVwTepxv7Kfz/dcP2EI+uith4H8GdtZuzfbtxi/P8kFSXzaCmyQ8R3j8unn7ZMJHc3/d/K7S2/PLy6+rc1dAQAAAAAAMBwJdwyujh73nf18vuf69f312pA+euthIH/Gwayd0sd//t69bnaL6U2SvD/J1aWUD/a1JkAze269Sd78hN1azn/w5Pm564HlbewIAAAAAACA4Ui4Y3Ct6nHfM6zQm57H5qzvJ3wb0kdvPQzkzziYtVfWWms/nntmkllJJiaZmeTodB3VssaEJB9K8sV+9tTKV5LM7efX0QP02sAQev3jdsneszZpOnfvgyvzwZMXtLkjAAAAAAAAhpueH9wzsB7scT+5n8/3XL++4Y4N6aO3HgbyZ2xn7ZZqrSuzdpDjjiSnJDmllPKmJF9qmHtTKeXUWutv+tlbz9e8o/t1+symITA6TOg+nuXo487Kqs6HZ9BOveS2HHXJbTly3qwh6A4AAAAAAIDhwM4dg+ueHvfN/2l2a43rO5PcNwR99Fx79wDWTpKNB7F24/qetddLrfW4JJ/uMfwfA1EbGLvmbLNp3vC4XVrOv/+k+blnyYo2dgQAAAAAAMBwItwxuG5P0vjPsLfs5/MzG67vrrWuXs8+Fva4708fM3vc99xdYr1rl1JmpOt4kwGv3a2x937titGLjyZZ2nD/2FLK1AGsD4xBb3rCbtlj5sZN5+5esiIfOsXxLAAAAAAAAGOVcMcgqrUuT3Jbw9B2/SzRuP66DWil57P96aPn2p61BrP2DenasaTftUspm2TtXUE25P1bS611cZJzGoY6kuw2UPWBsWni+K7jWTrGNT9y6ZSLbs3vFvTMvAEAAAAAADAWCHcMvvkN17uXUvr0npdStkoyvUWdDekhSfbqx7N79lLr2iQPDkbt7nDM1YNRu1EppaOUMrkftZOuXVkaTenn8wAPs892m+U1h+3ccv4/T5qf+x50PAsAAAAAAMBYI9wx+P7WcD01yd59fO7gHvd/Xd8Gaq23JbmpYeigfjze2MeKJP/oUXt1kvMbhh5RSmn+z87XXTtp/jM2vn+7l1I2HYjapZTdSil/KKVcm2RZkg/1se4aM3rcD+SxL8AY9tYn7pZdt5rWdO7OxcvzsVMva3NHAAAAAAAADDXhjsH3ux73R/Xxuaf3uP/9APZxQCllVm8PdO9m8cSGobNrrUt6qb1Fkkf2safG9+L6WutVvdQel+Spfazd+P4tTXJmj/m7kzwhyU5Jxid5Rh/rppQyIcmjGoYeyNrhGYD1NnlCRz793H3S4nSW/Oz8m3PmVXe1tykAAAAAAACGlHDH4Ds7a3/w/5pSysR1PVBK2SLJCxuGzqy1Xr+Bffyk8SWSvLEPz7wsSeNOGd9vse6nPe7f3FvhUspTkuzRh9q/yNrHvrypD7X3SnJEw9DPa61LG9fUWu/J2ruQ7F1KaXxmXV6dtd+XX9danZMADJj9t5+eVz229fEs7znx4ixdsbqNHQEAAAAAADCUhDsGWa21M8mXG4Z2TvLZVutLKeOSfCfJxg3DXxiAVk5LcmnD/TtLKYeuo489knyyYej2JD9utrbWemWS3zQMvaiU8rx11N4qydcbhpb1uG+svSjJdxuGHlNKeec6am+U5HtZ+/f2F1ss/1qP++N6O/allPKIJP/V2GKPe4AB8Y4n7Z6dtpjadO6me5bmc6dd2eaOAAAAAAAAGCrCHe1xXJIbG+7fWEo5rvvYk38qpWyW5PisfVzJmbXWnzUrWkrZsZRSG79aNVBrrUne3TA0KckvSinPbFL30HSFQTZrGH5fiyNZ1nhvklVrSiT5binlVU1q75Xk9CQ7NAx/ptZ68zpqfyzJ/Q33nyqlvK+U0tGj9rbpCpkc2DD8g1rr31vU/VaS8xvu90jyx1LKnCZ9d5RSXp3kT0kaP209rtZ63jp6B1gvkyd05BPPntdy/n/PuDaX3LyojR0BAAAAAAAwVErXZ/4Mtu7AxO+TTGkYvivJL5MsTFfY4RlJpjXM353kwFrrDS1q7pjkusaxWmvppY8v5uHHppyf5Kwkq9MVjDisx/zPaq0td+JoqP2OJJ/pMXxFkj+k62iVuUmenLVDReckObzWurKX2s9L184hjc/elOTXSe5NsnuSI9MVWlnjmnS9fy0//Syl7JTkjCTbNgzX7rHz07WryHZJnphkmx6Pn5Lk2bXWITkboTuEMn/N/fz58zNnzsNyKcAI954TLs6Pzr2p6dzeszbJyW86NBM6ZDUBAAAAAAAG04IFCzJ37tzGobm11gXten3hjjYqpRyR5ISsfeRKKwuTPLXWetE66u2Y/oc7Srp2EnlDH3pIkpOSvKDWurwvi0sp707y8fRtV5izkxxVa72vj7X/Jcn/JpnYh+VXJHlyrfXG3haWUnZN8tMk+/elj3SFPz6d5D9rrat6WzxYhDtgbFi0dGWe9Nk/547Fzf83/B9P3TOvf9wube4KAAAAAABgbBnqcId/6ttGtdbTkuyZ5Afp2hGimQeTfC3JnHUFOzagh1prfWOSpyW5cB1Lr0nyqlrrMX0NdnTX/2SSQ5L8JV0hiGZuS/KudO3YcV8/an8vyT7p2u2kVajiviSfTHJAX4Id3XWvTvKoJG9Nj7BMDyvSFc55RK31P4Yy2AGMHZtOmZCPHD235fznT7sy1921rlOzAAAAAAAAGOns3DFESinTkjwuyfZJpie5P127TZxTa13cxj52SXJwkllJJiS5M13HkVxUN/A3RyllmySPSddxJlOS3JPkoiTnbWgwopSyeZLD03WcysbpCnUsSPK3Wmur4Exfa++V5BFJtkrXLiF3pyv0cVat9cENqT2Q7NwBY8vrvnd+frNgYdO5R+08Iz969aPStTkTAAAAAAAAA22od+4Y364XYm211gfStQPFUPdxTbp26RiM2rem67iTwah9d7p20RiM2pcluWwwagOsrw8fPSdnXXNXFi97eDbur9fek5+ed1Oef9D2Q9AZAAAAAAAAg82xLAAwAszcZHLee+ReLec/fuplueP+Ddq4CAAAAAAAgGFKuAMARojnP2J2Dt5pRtO5+5etygdPadvOXwAAAAAAALSRcAcAjBDjxpV84tnzMnF88z++fz1/YX4zf2GbuwIAAAAAAGCwCXcAwAiy85bT8tYn7tZy/gMnz8+ipSvb2BEAAAAAAACDTbgDAEaY1xy2c/bceuOmc3csXp5P/ebyNncEAAAAAADAYBLuAIARZkLHuHzqOftkXGk+/8O/3Zi/XXt3e5sCAAAAAABg0Ah3AMAItO/szfKvh+7Ucv49J1ySZStXt7EjAAAAAAAABotwBwCMUO948u6ZPWNK07lr71qS406/us0dAQAAAAAAMBiEOwBghNpo4vgce8y8lvNf+/M1uey2+9vYEQAAAAAAAINBuAMARrDH7rZlnnPAdk3nVnXWvPvnF2d1Z21zVwAAAAAAAAwk4Q4AGOHed9Re2XzqxKZzF928KN85+/r2NgQAAAAAAMCAEu4AgBFu+tSJ+eAz57Sc/+/fXpGb7nmwjR0BAAAAAAAwkIQ7AGAUeMY+s/KEPbdqOrd05eq898RLUqvjWQAAAAAAAEYi4Q4AGAVKKfnos+Zm6sSOpvNnXHVXTrrwljZ3BQAAAAAAwEAQ7gCAUWLbzabkXU/ds+X8R395We5dsqKNHQEAAAAAADAQhDsAYBR5yaN2yAHbb9Z07p4lK/KJX1/W3oYAAAAAAADYYMIdADCKdIwr+dRz9smEjtJ0/qfn3Zy/Xnt3m7sCAAAAAABgQwh3AMAos9vMjfO6w3dpOf/eEy/J8lWr29gRAAAAAAAAG0K4AwBGoTc+ftfstMXUpnPX3rkkX/njNW3uCAAAAAAAgPUl3AEAo9DkCR35+LPmtpz/6p+uydV3PNDGjgAAAAAAAFhfwh0AMEo9etct8uwDtm06t2J1Z9574iXp7Kxt7goAAAAAAID+Eu4AgFHsfUftnekbTWg6d+519+T4829qc0cAAAAAAAD0l3AHAIxiM6ZOzH8etXfL+WN/dXnuemB5GzsCAAAAAACgv4Q7AGCUe84B2+bRu2zedG7R0pX56C8vbXNHAAAAAAAA9IdwBwCMcqWUfPyYeZk4vvkf+ydfeGv+fOWdbe4KAAAAAACAvhLuAIAxYKctpubNj9+15fz7TrokS1esbmNHAAAAAAAA9JVwBwCMEa89fJfsttW0pnM33bM0X/jDVW3uCAAAAAAAgL4Q7gCAMWLi+HE59tnzWs7/zxnX5rLb7m9jRwAAAAAAAPSFcAcAjCEH7TgjL3zk9k3nVnfWvOeES9LZWdvcFQAAAAAAAOsi3AEAY8y7n7pntpg2qenchTfdlx/87YY2dwQAAAAAAMC6CHcAwBiz6UYT8sFn7N1y/r9+c0Vuv39ZGzsCAAAAAABgXYQ7AGAMevo+s/K4PbZsOrd4+ap86JQFbe4IAAAAAACAVoQ7AGAMKqXko0fPzeQJzf8q8Ov5C3Papbe3uSsAAAAAAACaEe4AgDFq9oyN8vYjdm85/4GT52fJ8lVt7AgAAAAAAIBmhDsAYAz718fslL1mbdJ07tZFy/KZ313Z5o4AAAAAAADoSbgDAMawCR3j8olnz0spzee/c/Z1ueTmRe1tCgAAAAAAgLUIdwDAGLff7M3yskN2bDrXWZN3n3BxVq3ubG9TAAAAAAAA/JNwBwCQf3vy7tl6k8lN5xbcen/+75wb2twRAAAAAAAAawh3AADZePKEfPjoOS3nP/u7K3LrfUvb2BEAAAAAAABrCHcAAEmSp8zZOk/ee2bTuSUrVudDpyxoc0cAAAAAAAAkwh0AQIMPHz0nUyd2NJ373aW353cLFra5IwAAAAAAAIQ7AIB/mrXplLzjyXu0nP/QKQuyZPmqNnYEAAAAAACAcAcAsJaXHbJD5m67SdO5Wxcty+d+f2WbOwIAAAAAABjbhDsAgLWM7xiXY4+Zl3Gl+fy3zrou829Z1N6mAAAAAAAAxjDhDgDgYfbZbrO89JAdm8511uQ/T7wkqztre5sCAAAAAAAYo4Q7AICm/u3Ju2fmJpOazl1086L84G83tLkjAAAAAACAsUm4AwBoauPJE/LhZ85pOf9fv7kit9+/rI0dAQAAAAAAjE3CHQBAS0+Zs3WeuOdWTeceWL4qH/nFpW3uCAAAAAAAYOwR7gAAWiql5MNHz8mUCR1N50+95Lb88fI72twVAAAAAADA2CLcAQCs03bTN8rbn7Rby/n3nTQ/D65Y1caOAAAAAAAAxhbhDgCgV684dKfsufXGTeduuW9pvvCHq9rcEQAAAAAAwNgh3AEA9GpCx7gc++x5KaX5/DfPuC6XL7y/vU0BAAAAAACMEcIdAECfHLD99Lz44O2bzq3qrHnvCZeks7O2uSsAAAAAAIDRT7gDAOizf3/Kntly40lN5/5x43350d9vbHNHAAAAAAAAo9+wD3eUUh4/1D0AAF02nTIhH3j63i3nP/Xry3PH4mVt7AgAAAAAAGD0G/bhjiR/KKVcXUp5fyllh6FuBgDGuqfvMyuH7b5l07n7l63Kx355WZs7AgAAAAAAGN1GQrgjSXZK8qEk15RSTiulvKiUMnmIewKAMamUko8dPTeTxjf/a8QpF92av1x5Z5u7AgAAAAAAGL1GSrhjjXFJHp/ke0kWllK+Vkp51BD3BABjzvabb5S3PHG3lvPvP3l+lq1c3caOAAAAAAAARq+REO54dZK/NNyX7u+bdM+dVUq5rJTy76WUrdveHQCMUa9+7M7Zfea0pnM33P1gjjv96jZ3BAAAAAAAMDoN+3BHrfWbtdbHp+tolvcnuSIPBTzSfb1Hkk8mubGU8stSyrNLKRPa3y0AjB0Tx4/LscfMazn/9b9ck6tuX9zGjgAAAAAAAEanYR/uWKPWemOt9eO11r2SHJzkK0nu7rFsfJKnJTk+ya2llM+XUvZrb6cAMHY8YscZecFBs5vOrVxd858nzk9nZ21zVwAAAAAAAKPLiAl3NKq1/r3W+qYk2yQ5OsnPk6zonl6zq8fmSd6c5PxSygWllDeXUjZvf7cAMLq9+2l7ZvOpE5vOnXv9PfnZ+Te3uSMAAAAAAIDRZUSGO9aota6qtf6i1vq8JFsneX2SMxuWlO6vfZN8PsktpZTjSylHlVJG9M8OAMPFZhtNzPuevlfL+WN/fVnufmB5GzsCAAAAAAAYXUZNwKHWuqjW+vVa62FJZid5e5LTs/aOHhOTPDvJKUluKqUcW0rZaUgaBoBR5Fn7bZtDd22+QdZ9D67Mx391WZs7AgAAAAAAGD1GTbijUa311lrrF5I8Pckrk9yYpHZ/JV1Bj1lJ/iPJVaWUE0sp+w1FrwAwGpRS8rFnzcvE8c3/anHCP27J2dfc1eauAAAAAAAARodRF+4opWxRSnlFKeWkJHcl+W66dvL455Ie1+OSPDPJ37t38uhoW7MAMIrstMXUvPFxu7acf9+J87N81eo2dgQAAAAAADA6jIpwRyllSinlRaWUU5PcmuR/kzwjyUbpCnCs+XowXWGPJyV5TZIz1pRI0pGunTy+297uAWD0eN3jds7OW05tOnftXUvy1T9d0+aOAAAAAAAARr4RG+4opYwrpTyllPK9JLcn+V6SpyYZn7V356jpCnH8a5Kta60vr7X+odb6v7XWw5PskeSna8omeUEp5cVt+0EAYBSZNL4jH3/WvJbzX/njNbnmzgfa2BEAAAAAAMDIN+LCHaWUg0opn09yS5JfJXlRkmlZO9CRJDcm+WiS3Wqth9dav1NrXdKzXq31qlrrC7L2jh2vG5TmAWAMOGSXzfPcA7drOrdidWfed+L81Frb3BUAAAAAAMDINSLCHaWUnUspHyilXJHkr0nenGRmHh7oWJquHTyeWGvdqdb6wVrrtX18mU+tebkkew1E3wAwVr33yL0yfaMJTefOufbunPCPW9rcEQAAAAAAwMg17MMdpZRzklyV5INJdstDgY41/+S3JDkzyavSdezKy2qtf1yPl7q6oe7k9e8YAJgxdWLee2TrrOTHf3VZ7l2yoo0dAQAAAAAAjFzDPtyR5OCG68ZAx01JPpZk11rrYbXWb9VaH9iA15naUPuaDagDACR57oHb5eCdZjSdu2fJinzy15e3uSMAAAAAAICRaSSEO9Yo6Tp25QdJnpRkp1rrB/px7EpvdkjymyTHJXnfANUEgDGrlJKPHzMvEzp6nqLW5Sfn3ZRzr7unzV0BAAAAAACMPCMl3HF2klcnmVVr/Zda6x9qrbW3h/qj1npRrfXIWutbaq2/GMjaADBW7brVtLz+8F1azr/3xEuyYlVnGzsCAAAAAAAYeUZCuGO3Wutja63frLUuHupmAID+ecPjd82Om2/UdO7qOx7IN/7iNDQAAAAAAIB1GQnhjpWllO1LKdtvSJFSyvhSyuGllDeXUt4xUM0BAOs2eUJHPvaseS3nv3T61bn+riVt7AgAAAAAAGBkGQnhjuuTXJfk2g2sMzXJH5N8PslbNrAWANAPj9ltizxrv22azi1f1Zn3nzw/A3ziGgAAAAAAwKgxEsIdSVK6vzbEAw21ttrAWgBAP73v6Xtn0ykTms6dcdVdOeWiW9vcEQAAAAAAwMgwUsIdA+ERDdedQ9YFAIxRW0yblHc/bc+W8x/95WVZ9ODKNnYEAAAAAAAwMowf6gZKKfOSHNPHtR9Yj5cYl2TzJM9rGLt9PeoAABvo+Y+YnZ+ff3POu+Heh83d9cDyfOq3l+fYY+YNQWcAAAAAAADD15CHO5JcleTlSXboZV1J8sENeJ01x7rUJH/YgDoAwHoaN67k48fMy1FfPCOrOuvD5n/4txvznAO2y4E7TB+C7gAAAAAAAIanIT+Wpda6LMnb8lD4YtBeqvv74iSfHuTXAgBa2GPrjfPqw3ZuOf/eEy7JytVOUAMAAAAAAFhjyMMdSVJrPSXJr9IV8Oj51ajZfF+/lib5Y5LH1VqvGtyfCABYl7c8YbfMnjGl6dwVty/ON8+8rs0dAQAAAAAADF/D4ViWNf5fki17jJUk13Zf1ySt/5lvczXJqiQP1Frv37D2AICBMmViRz569Ny8/Nt/bzr/+dOuzFHzZmX2jI3a3BkAAAAAAMDwM2zCHbXWB5Pc0HO8lNK45mHzAMDI9Lg9tspR+8zKqRff9rC5ZSs784GT5+dbLz9orb8LAAAAAAAAjEXD4liWXtyYrtDHjUPdCAAwsD749L2z8aTmWdM/XnFnfj1/YZs7AgAAAAAAGH6Gfbij1rpjrXWnWutOQ90LADCwttpkct711D1azn/olAW5f9nKNnYEAAAAAAAw/Az7cAcAMLq96OAdst/szZrO3bF4eT7z2yva2xAAAAAAAMAwI9wBAAypjnElxx4zLx3jStP57/71hlx4033tbQoAAAAAAGAYaX7IfRuVUj7QeF9r/ci65gdKz9cBAIbO3ttsklc+Zqd84y/XPmyu1uS9J1ySU950aMZ3yKUCAAAAAABjz5CHO5J8KEltuO8Zuug5P1CEOwBgGHnbEbvl1Itvyy33LX3Y3KW33Z/vnH19XvXYnYegMwAAAAAAgKE1nP75a/O92Efu6wAA/bDRxPH58DPntJz/7O+vbBr8AAAAAAAAGO2GS7ijt8BFGcAvAGCYOmLvmXnqnK2bzj24YnU+dMqCNncEAAAAAAAw9IbDsSw7beA8ADCKfPCZe+eMq+7MkhWrHzb3+0tvz28XLMxTWgRAAAAAAAAARqMhD3fUWm/YkHkAYHSZtemUvPMpe+TDv7i06fyHTlmQQ3fdItMmDflfYwAAAAAAANpiuBzLAgDwTy89ZMfM23bTpnO3LVqWz/7uyjZ3BAAAAAAAMHSEOwCAYadjXMmxx8zLuNJ8/jtnX5f5tyxqb1MAAAAAAABDZFSGO0op80opryql/Gcp5aWllK2GuicAoH/mbbdpXvboHZvOddbkvSdektWdtb1NAQAAAAAADIERFe4opXSUUp5ZSvl8i/lppZSTklyY5OtJPpLk20luLKV8qpQyon5eABjr/u3Je2TrTSY3nbv45kX53jnXt7chAAAAAACAITBiwg6llCcluSzJiUneXErZtsd8SfLrJM9IUrq/0v19YpJ3JvlpKWV825oGADbItEnj86Fnzmk5/9+/uzILFy1rY0cAAAAAAADtNyLCHaWUxyU5NckueSi0sVOPZS9Pcmj39Zo92kvDfUlyTJJ/G6Q2AYBB8JQ5M3PEXs1PWHtg+ap8+BcL2twRAAAAAABAew37cEf3USrfSNK440ZJsm2PpW9tmEuS/0tyZJI3JrklDwU8/rOUssWgNQwADKhSSj589NxsNLGj6fyv5y/M6Zff3uauAAAAAAAA2mfYhzuSPDXJrnloN46/JNmv1vqTNQtKKbsn2ad7TU3yq1rrK2qtv6m1fjXJIUnu6F4+NV07eAAAI8S2m03J24/YveX8+09akAdXrGpjRwAAAAAAAO0zEsIdT264vjDJk2qtF/dY8/Tu72t27fhS42St9ZYkn2oYOmogGwQABt8rDt0xe83apOncLfctzRdOu6rNHQEAAAAAALTHSAh3PKbh+hO11pVN1jyt4XpxktObrPl1w/WeA9EYANA+4zvG5dhj5qaU5vP/e+Z1uey2+9vbFAAAAAAAQBuMhHDH1g3Xf+85WUqZnK4AyJojWc6otTbbl/2GNY8kmTnQTQIAg2//7afnJQfv0HRudWfNe0+8JJ2dtek8AAAAAADASDUSwh2bN1zf0mT+sUkmNdz/oUWdxh0/NtrQpgCAofHvT90jW248qencBTfelx+ee2ObOwIAAAAAABhcIyHc0bgLx4Qm80/q/r5mk/Y/tqizVcP14g1tCgAYGptMnpAPPmPvlvOf+s3lueP+ZW3sCAAAAAAAYHCNhHDHHQ3XOzWZf1q6jmNJkjtqrRe1qPPo7u81ya0D1BsAMASOmjcrh+++ZdO5xctW5cO/uLTNHQEAAAAAAAyekRDuuKDh+qjGiVLK3knmdN/WJL9aR523NFxfOCCdAQBDopSSjz1rbiZPaP5XmVMvuS2nXXp7m7sCAAAAAAAYHCMh3PHr7u8lyXtKKfsmSSllSpIvN8wlyfE9Hy5dPp3ksQ3D6wqBAAAjwOwZG+WtT9y95fz7T56fB5avajkPAAAAAAAwUoyEcMdPk9ydrp05Nkvy91LKX5PckOSw7vGa5Pokv13zUClly1LKG5P8I8k78tDRLbclOak9rQMAg+lVj90pe269cdO52xYty3//9oo2dwQAAAAAADDwhn24o9a6OMmb07U7R00yPslBSbboXrJm14431Vprw6O7JflSkn0a1nV2r1s22H0DAINvQse4fPI5+6SU5vP/d871ueDGe9vbFAAAAAAAwAAb9uGOJKm1/jjJ65Ms7x4qDd9XJXltrfXXPR5r/Ke6JcmKJK+rtZ40iK0CAG223+zN8rJDdmw6V2vynhMuycrVne1tCgAAAAAAYACNiHBHktRav55kzyQfTnJy99fHk+xWa/3fJuvvTnJfunbrOCHJI5qtAwBGvnc+ZY9ss+nkpnOXL1yc/znj2jZ3BAAAAAAAMHDGD3UD/VFrvTFd4Y6+OjrJ/Fqr/dgBYBSbNml8PnL03Lzqu+c1nf/CaVflyLmzsuMWU9vcGQAAAAAAwIYbMTt3rI9a6xmCHQAwNhyx98wcNW9W07nlqzrz3hMvSa21zV0BAAAAAABsuFEd7gAAxpYPPmPvbDy5+cZkZ19zd37+j1va3BEAAAAAAMCGE+4AAEaNrTaZnPceuVfL+Y+demnuemB5GzsCAAAAAADYcM3/aeswVkrZPMnhSbZNMjVdP0O/Qyq11o8McGsAwDDw/EfMzon/uCXnXn/Pw+bue3BlPvbLS/P5F+w/BJ0BAAAAAACsnxET7iil7JLkv5M8PQOz48iQhDtKKbsneXWSxyfZJclGSW5PckOSk5N8v9a6cJB7GJfkqCQvSnJwkplJOpPckmR+ku8nObXWunI96z8uyUuTPDpdIZyO7tpXJvlRkhNqrQ+uZ+0DkrwyyWOT7JBkUpLbklyb5PgkP6613rcedde8J89I8qgk2yTZNMniJHck+WuSXyf5Wa119fr0DkB7jBtXcuyz5+XIL5yRFas7HzZ/0oW35pgDtsvhu285BN0BAAAAAAD0X6m1DnUPvSql7JfktCTTk5Tu4fVtvCSptdaOAWit7y9ayvgkxyb5t6w7nLI0yTtqrV8bpD52TVd44+Bels5P8sJa6/x+1J6Z5FtJjuxl6U1JXlxrPaMftaclOS7Jy3pZek+SV9VaT+xH7cck+WaS3fuw/Nokr621ntbX+oOllDInXb9OSZL58+dnzpw5Q9gRwPDyhdOuyudOu7Lp3HbTp+R3bz8sG00cMTlXAAAAAABgCC1YsCBz585tHJpba13QrtcfiB0wBlX3jgrfTzIj3cGMNVPr+dV23cGOnyX59/T+nk9J8tVSyucGoY85Sc5K78GOJJmb5NxSyqP6WHubJGek92BHksxO8sdSyrP7WHvjJL9P78GOpOv3yQmllLf2sfYrkvwpfQt2JMnOSX5TSnl9H9cDMERe97ids+tW05rO3Xzv0nz+tKva3BEAAAAAAMD6GfbhjiTPS7J3Hgp1rEzXDg7PSLJPuo422amfXzu3r/0kyceTHN1wf3uS16cr5DAlyV7p2tVjRcOat3UHDwZEd0DipCRbNQyfluRJ6doRZbMkR6QrRLHGlCQndgc31lV7fJKfJtmtYfj8JM9KskWSaek6ouUnDfMdSb5bSpnXh/b/J11HpaxxdZKXJNk6Xcfa7J/kq1l7N5fPlFKe1Evfj0/yje5e1vhjkmO6a09M15E1z0pyeo/ejyulPK0PvQMwRCaN78gnn936j5n/PePazL9lURs7AgAAAAAAWD/D/liWUspP0hXwSJIlSR5Xaz1/CFvql+7wwoV5KEhzbZJDa60Lm6x9VLoCF1O7h+5NslOtdYM/eSqlfDrJOxuGvpzkzbXHb4BSSknyXz3WfrvW+q/rqP3GdAVu1jg5yfNqrSubrH1Tki81DJ1ea33iOmofleSXDUN/S3JErfWBJmufla4dUtaENa5MMqfWuqrJ2vFJLkpXcGiN99ZaP7GOXt6f5CMNQ9cn2bPWurzVM4PJsSwAffOfJ16SH/ztxqZzc7fdJCe94dCM7xgJeVcAAAAAAGCoOJald4/o/l6TfGokBTu6fTAPvc+dSZ7bLNiRJLXWvyZp3K1jetYOWayXUsoWSd7cMHR+krf0DHZ091CTvCvJqQ3DLy2l7NGi9oQk72sYujnJi5sFO7rrH5fkKw1DTyiltAx3JPlww/WSJM9pFuzorn1Skvc0DO2e1ke5HJm1gx0/XFewo7v+R5P8uGFoxzwUPAJgmPqPp+2ZrTae1HRu/i335ztnX9/ehgAAAAAAAPppJIQ7tm64/tGQdbEeSikzs/ZxLKfWWi9Y1zO11uOTnNsw9K/du2lsiJcmafxU69haa+c6elgT8FijI8nLWyx/Rtb+NfpcrXVJL/28P8nShvtXNVtUSjkgyYENQ9+qtd7SS+3PJWlc07R2kuf2uP9I01UP97Ee90f18TkAhsgmkyfkI0e33tnoM7+7Mjfd82AbOwIAAAAAAOifkRDuaDzyovme6sPXkUnGN9z/uNXCHn7YcL1NkkM3sI/GgMkDWXtXjqZqrZem6ziZNXqGIZrVTpKf9KH2PUl+2zD09FLK5D7U7vX96z6C5fiGoYNLKbObLD244fr6WusVvdXurr8gyf0NQ7v35TkAhtZT5mydJ+09s+nc0pWr876T5me4H1UHAAAAAACMXSMh3HFrw/W0Ieti/Tyhx/0f+/jcn3rcH7m+DXSHJg5pGDq71rq81fp19LFrKaVZkKHxZ7yyDztrNKs9LclhvdR+MGvvaNLX2iXJ0xonu3dCuTfJwnQdlXN9H+uusazherN+PgvAECil5CNHz8m0SeObzv/5yjtzykW3Np0DAAAAAAAYaiMh3HF2w/UhLVcNT/s0XN9Ra72tj88tSLKq4f4RG9DDXkkmNNxf2I9ne65dq49SyvQk2w1G7W7zGq7nd+/KscG1a5dH1VpnJZmc5Dl9rJtSyowkWzYM3dnXZwEYWrM2nZJ3PXWPlvMf+cWlue/BFW3sCAAAAAAAoG9GQrjjRw3Xrx+yLvqpe3eIxk+Qrurrs90hhsYjaHbbgFb27HHf5z6SXNvjvmcfg1a7lDIryabrWfumrB2Oafn+1VpXdh8T01fPTtduIGtc3o9nARhiLz54h+y//WZN5+5esiIfO/Wy9jYEAAAAAADQB8M+3FFr/WOSX6XrA/UjSymvHOKW+mp6kkkN9/3d631hw/V2LVf1blaP+/70sbDHfc8+hmXtWmtnkjvWUXu9lFImJnlXj+FTBqI2AO3RMa7kE8+el/HjStP5n51/c8686q42dwUAAAAAALBuwz7c0e1V6drpoST5einl86WUHYa4p95s1eO+P7tDJMm9DdfjSykbD0Ef9/a4nzFQtWutK5MsGYza3Rp771l7fX0wa+8CcmOSUweicCllq1LKnP58JdllIF4bYKzZc+tN8rrDW/8v9N0nXJwHV/T1JDAAAAAAAIDBN36oG+hNKeUJ3ZfvS/LldO2I8eYkby6l3JjksiSLkiztR9laax3sHUCm9bhf3M/nH+hxv/F61NjQPpr1MFC119SfOoi111jfYMw/lVKOSfKeHsPvr7Uu39Da3d6QrvAIAG3wpifsmlMvuS3X3bXkYXM337s0//3bK/OBZ+w9BJ0BAAAAAAA83LAPdyQ5LUltuK/p2sEjSXZIsn0/65XuGoMd7pjU435lP5/vuX7CEPTRWw8D+TO2s3a/lFKemOSHeej3XZKcVGv97obUBWDoTJ7QkU88e15e8I2/Np3/9tnX5en7zsoB209vc2cAAAAAAAAPN1KOZUnW/mC9NnwNVx097jv7+XzP9ev7a7UhffTWw0D+jINZO6WU0mrhupRSjkhySpLJDcNXJ3n5+tQDYPh41M6b50UHN8+I1pr8x88uzvJVq9vcFQAAAAAAwMONhJ07koeCHev1Af0QWdXjvmdYoTc9f23W9/iPDemjtx4G8mcczNora639DgKVUp6b5AdJJjYML0zy1Frrov7W68VXkhzfz2d2SXLyAPcBMKa8+2l75vTL7sjC+5c9bO6qOx7IV/54Td7+pN2HoDMAAAAAAICHDPtwR611JO0u0ujBHveTm65qref69Q13bEgfvfUwkD9jO2v3qpTy1iSfzdo7iixM8vha6zX9rdebWusdSe7ozzPruRkJAA02mTwhH3vW3Lzqu+c1nf/Kn67O0+ZtnT233qTNnQEAAAAAADxkpAYnRoJ7etz391OhxvWdSe4bgj56rr17AGsnycaDWLtxfc/aLZVSOkopxyX5fNb+7+OGJIfVWi/vZx8ADHNH7D0zz9x3m6ZzK1fX/MfPLs7qzuF8EhwAAAAAADDaCXcMntuTNH4StGU/n5/ZcH13rXX1evaxsMd9f/qY2eO+584S6127lDIjyYTBqN2tsfc+7YhRStkkyS+TvLHH1IIkj6m1XtXPHgAYIT74jL0zfaMJTecuunlRvn3WdW3uCAAAAAAA4CHCHYOk1ro8yW0NQ9v1s0Tj+g35RKnns/3po+fanrUGs/YN6dqxpN+1u0MajbuC9Pr+lVJmJTkjyVN7TP05XcGOm/v6+gCMPJtPm5QPPXNOy/n//t0VueHuJW3sCAAAAAAA4CEjOtxRSplRSnlaKeVfSynvLKW8v8f8QaWUjqHqL8n8huvdSyl9er9LKVslmd6izob0kCR79ePZPXupdW2SBwejdnc45urBqN1TKWXHJGcn2afH1I+SPKXWel8/XhuAEeqZ+26Tx+/RfKOoZSs7854TLkmtjmcBAAAAAADab8SFO0opk0oprymlXJiu4zZ+meR/knwqyYd6LD8hyS2llLcMUcjjbw3XU5Ps3cfnDu5x/9f1baDWeluSmxqGDurH4419rEjyjx61Vyc5v2HoEaWUsh61k+Y/Y+P7t3spZdMBrJ0kKaXMTvKnJDv2mPpEkhd3h0wAGANKKfn4MfMydWLzvzKcfc3d+el5NzWdAwAAAAAAGEwjKtxRSjkoyeVJvpquXRbGJSkNX41rxyeZlWSrJJ9Lcnoppfk/xx08v+txf1Qfn3t6j/vfD2AfB3QfQbJOpZTJSZ7YMHR2rbXZfvSNtbdI8sg+9tT4Xlxfa72ql9rj8vAjU1ppfP+WJjmz2aJSyrQkv0myQ8NwZ5I31lrfW/3zbIAxZ5vNpuTdR7beLOpjp16W2+9f1saOAAAAAAAARlC4o5RydJIzkmyfriBH4wfvzT6E3z5dP1/tXv+YJL8upUwd5FYbnZ21d814TSll4roeKKVskeSFDUNn1lqv38A+ftL4Ekne2IdnXpakcaeM77dY99Me92/urXAp5SlJ9uhD7V9k7WNf3tSH2nslOaJh6Oe11qUtlh+XtXdTWZ3kpbXWr/T2OgCMXi9+5PZ55I4zms4tXrYq7ztpvuNZAAAAAACAthoR4Y5SygFJfpCkMRhxa7qOY3lTeuza0W1puo7bWBMEKUn2T9dxG21Ra+1M8uWGoZ2TfLbV+lLKuCTfSbJxw/AXBqCV05Jc2nD/zlLKoevoY48kn2wYuj3Jj5utrbVema7dL9Z4USnleeuovVWSrzcMLetx31h7UZLvNgw9ppTyznXU3ijJ97L27+svtlh7dLoCLI3eXmv9Qav6AIwN48aVfPI58zJxfPO/Jv3+0tvzq0sWtrkrAAAAAABgLBsR4Y4kX0myUbpCGivTFejYsdb62la7LNRab6u1PiHJ0Unuy0MBj9eXUma3pesuxyW5seH+jaWU47qPPfmnUspmSY7P2seVnFlr/VmzoqWUHUsptfGrVQPdx4u8u2FoUpJflFKe2aTuoekKg2zWMPy+FkeyrPHeJKvWlEjy3VLKq5rU3ivJ6Vn7GJTP1FpvXkftjyW5v+H+U6WU95VSOnrU3jZdIZMDG4Z/UGv9e5M+SpIP9xg+odb6pXX0AcAYsvOW0/K2I3ZrOf/BU+bnvgdXtLEjAAAAAABgLCvDfVvxUsrTkpzafVuT/L9a6897rOlcM19rXetD/+75A5OclWRC99D7a63HDlLLD9MdmPh9kikNw3cl+WWShekKOzwjybSG+buTHFhrvaFFzR2TXNc4VmtttoNJ4zNfzMOPTTk/Xe/N6nQFIw7rMf+zWmvLnTgaar8jyWd6DF+R5A/pOlplbpInZ+1A0TlJDq+1ruyl9vPStXNI47M3Jfl1knuT7J7kyHSFVta4Jl3v36Im9Z6c5Le9/Ux91dv7PlhKKXOSzF9zP3/+/MyZM2coWgEYlVau7syzvnxWFtx6f9P55xywXT7z//Ztc1cAAAAAAMBQWLBgQebOnds4NLfWuqBdrz++XS+0AY7u/l7TFTT4+boWN1NrPb+U8v0k/9pd5/AkbQt31FrP6t4l44Q8dOTKFkle3uKRhUme2irYsQHemqQjyRsaxg7M2rtdNDopyUv6UrjW+tlSysQkH89DIYw9ur+aOTvJUb0FO7prH9+908n/5qGjeWYneU2LR65I8uRmwY5uR7UYB4B/mtAxLp96zj45+stnZXXnw8OwP//HzXnmftvk8N23HILuAAAAAACAsWQkHMvymIbr/9mAOt9suN57A+qsl1rraUn2TPKDJMtaLHswydeSzKm1XjQIPdRa6xuTPC3JhetYek2SV9Vaj6m1Lu9H/U8mOSTJX9IVomnmtiTvSteOHff1o/b3kuyTrt1OVrVYdl+STyY5oNZ6Y4s1SbJLX18XgLFt7rab5rWH7dxy/r0nXJIHlrf6YwkAAAAAAGBgjIRjWe5KMiNdYYEta633NFmzzmNZutdskeSO7tultdapg9FvX5RSpiV5XJLtk0xPcn+6dps4p9a6uI197JLk4CSz0nVkzZ3pOqblorqBvzFKKdukK5izTbqOo7knyUVJzqu1btCnYKWUzdO1+8q26doJ5b4kC5L8rdbaKjgz6jiWBaA9lq1cnSO/cEauvWtJ0/mXP3rHfOiZ/v8LAAAAAACjmWNZejet4br5ofd907bQRG9qrQ+kaweKoe7jmnTt0jEYtW9N8tNBqn13uo64AYBBN3lCRz713H3yvK+d03T+/865Ps/Yd1YO3GFGmzsDAAAAAADGipFwLMtdDdezNqDOdt3fa5K7N6AOADDGHLTjjPzLo3ZoOldr8q6fXZxlK1e3uSsAAAAAAGCsGAnhjhsarp+wAXWe2qImAECv3vXUPbLNppObzl1z55J86fSr2twRAAAAAAAwVoyEcMdpDdf/Xkrp6G+BUsqkJO9oGPrjBncFAIwpG0+ekI8fM6/l/Nf+fG0uvvm+9jUEAAAAAACMGSMh3HF8uo5SSZK9khzXn4dLKSXJt5Ls1DB8wsC0BgCMJY/fc6scs/+2TedWd9a88/iLsnyV41kAAAAAAICBNezDHbXW+Ul+kqR0D72mlHJKKWWv3p4tpeyTrp0/XrCmXJJTa60XDkavAMDo9/6n753Np05sOnfl7Q/kS3+4us0dAQAAAAAAo92wD3d0e3uSmxvuj0oyv5RyRSnlN40LSymfKKX8bynlkiQXJHlcHgqG3JPkrW3oFwAYpWZMnZiPPmtuy/mv/vkax7MAAAAAAAADakSEO2qttyd5epI781BQoyTZLcmTGpaWJO9K8ookcxrWJsmSJM+rtV436A0DAKPakfNm5ah9ZjWdW91Z8+/HX+x4FgAAAAAAYMCMiHBHktRaL06yX5LT81BoozZ8rw33jXMlyYIkj6y1/mnQGwUAxoSPPHNOy+NZrrh9seNZAAAAAACAATNiwh1JUmtdWGs9IsnhSY5P1zErpcXXsiSnJXlekn1qrZcNSdMAwKi0+bRJjmcBAAAAAADaYvxQN7A+aq1nJDkjSUopuyfZLsn0JBOS3JvkjiTza60rh6xJAGDUO3LerBw1b1ZOveS2h82tOZ7llDcfmknjO4agOwAAAAAAYLQYkeGORrXWK5NcOdR9AABj00eOnpNzrr079yxZ8bC5NcezvPMpewxBZwAAAAAAwGgxoo5lAQAYbjafNikfPdrxLAAAAAAAwOAZ9jt3lFI6kjw6yaOSzEmyQ7qOYNkoyfIk93V/XZ/k3CTn1lqvGIJWAYAx6qh9ZuVXlzieBQAAAAAAGBzDNtxRStk7yVuTPDfJZj2nG65rw/Ubup+9Ksl3kny71nr74HUJANDlw45nAQAAAAAABsmwO5allDK9lPK/SS5O8qp07dJR8vBAx5qvtR7v/to9yceTXF1KeW8pZeKgNw4AjGlb9OF4lktuXtTGjgAAAAAAgNFiWIU7Sinzkpyf5BXp6q1k7RBH6eUrDetLkqlJPprkrFLK1u35KQCAseqofWblqHmzms6t7qx55/EXZfmq1W3uCgAAAAAAGOmGzbEs3cGO05Ns3j20JqBRktyU5E9JrkhyfZLFSZYk6UgyJclWSXZMsm+SxyTZtEeNA5P8rZTyqFrrbYP+wwAAY5bjWQAAAAAAgIE2LMId3cem/CRdwY7Go1Z+lOQztdZ/9KPWuCRPSvKGJE/PQwGP2UlOLqU8uta6aqB6BwBotOZ4ljf+sPlfX77652vylDlbZ952mzadBwAAAAAA6Gm4HMvygSR75qEgxm1JnlBrfXF/gh1JUmvtrLX+ttZ6dJLDk9yQhwIjByZ5zcC1DQDwcEftMytHzmt+IpzjWQAAAAAAgP4a8nBHKWVSkjfloWDHdUkeVWv984bWrrWemeSQdB3rsqb+eze0LgBAbz5y9NzMmDqx6dwVty/Ocadf3eaOAAAAAACAkWrIwx3pOjplk3QFL1YneU6t9eaBKl5rvT3Ji7vrJ8msUsphA1UfAKCZLaZNykeOntNy/it/uiaX3LyojR0BAAAAAAAj1XAIdzyj+3tNcnyt9cKBfoFa61lJ/tQw9JSBfg0AgJ6evs82jmcBAAAAAAA22HAId+zVcH3yIL7Ojxqu9xnE1wEA+CfHswAAAAAAABtqOIQ7tmm4vmQQX+f8hus9BvF1AAD+qS/Hs1x8833tawgAAAAAABhxhkO4Y9OG64WD+Do3NlxPH8TXAQBYS2/Hs7z9Jxdm2UrHswD/n737jnOsqv8//v4kmcn0bbM7Wyi7LCxll96WJgiICCiKAmKDLyKoqCiifvVrwZ+9ACqgIogKIh0sYAWRsiC9LbDAAttg22ybnkk5vz9uZvZOSGYyJTdlXs/H45J7zz33k89Ockhm8sk5AAAAAAAAAJBdKRR31Pj22wt4P5vTtyapsYD3AwAA8CaDLc/yyvpO/eDvSwLOCAAAAAAAAAAAlItSKO6I9O045+KFuhPnXMJ3WFWo+wEAAMhmqOVZfrNomRYtbQ0wIwAAAAAAAAAAUC5KobgDAABgXDhhj5k6YY8ZOc9fcPPT2tJdsFpXAAAAAAAAAABQpijuAAAACNC3371ALU3RrOdWb+nRN//8XMAZAQAAAAAAAACAUkdxBwAAQIAm1lXrh+/bM+f52558XX97dnWAGQEAAAAAAAAAgFJHcQcAAEDADp83VR9auF3O81+5/Vmta+sJMCMAAAAAAAAAAFDKKO4AAAAogq8ct6vmNNdnPbepK67/ve1ZOecCzgoAAAAAAAAAAJSiSLET8DOzwyRZsfMAAAAotLrqiC46ZU+97xcPKpWlhuPfS9bphkdX6rQDcs/wAQAAAAAAAAAAxodSKe5w8oo6/hPQ/QAAABTdPttN0ieP2FGX3bM06/lv3fG8Dp47RdtPyT7DBwAAAAAAAAAAGB9KaVmWvsKLQm4AAAAl5TNH7aT5M5uynuvqTerzNz2tZLapPQAAAAAAAAAAwLhRSsUdQRRfUOABAABKSnUkpEtO3UvVkexvyx5bvkm/uu/VgLMCAAAAAAAAAAClpBSWZblP3qwdAAAA49K8lkZ98e0769t3vpD1/MX/elFH7DxVu87IPsMHAAAAAAAAAACobEUv7nDOHVHsHAAAAIrtzEPm6K4X1uq/r25807l40ulzNz6lP33qEEUj4SJkBwAAAAAAAAAAiqmUlmUBAAAYt0Ih049P3lMN0ey1t0vWtOvif70UcFYAAAAAAAAAAKAUUNwBAABQIraZVKdvvHO3nOd/dd+renTZm2f2AAAAAAAAAAAAlY3iDgAAgBLyvn230TG7tWQ955x0/k1PqSOWCDgrAAAAAAAAAABQTBR3AAAAlBAz0/dO2l3NDdVZz6/c2K1v3/F8wFkBAAAAAAAAAIBiorgDAACgxExpiOp7J+2R8/wNj67U3S+sDTAjAAAAAAAAAABQTBR3AAAAlKC37daiU/bbJuf5L936rDZ0xALMCAAAAAAAAAAAFAvFHQAAACXqayfspm0m1WY919oR01duf1bOuYCzAgAAAAAAAAAAQaO4AwAAoEQ11lTpopP3lFn28/94bq1ufHRlsEkBAAAAAAAAAIDAUdwBAABQwg7cYYo+dtgOOc9/8y/Pa+m6jgAzAgAAAAAAAAAAQaO4AwAAoMSd/7Z52rmlMeu57nhS593wpGKJZMBZAQAAAAAAAACAoFDcAQAAUOJqqsK65NS9VB3O/tbtuTfa9ON/vBhwVgAAAAAAAAAAICgUdwAAAJSB3WY26X/fsUvO81fe/5rue2l9gBkBAAAAAAAAAICgUNwBAABQJv7nkNk6YuepOc+ff9PTau2IBZgRAAAAAAAAAAAIAsUdAAAAZcLM9KP37anmhuqs51s7YvriLc/IORdwZgAAAAAAAAAAoJAo7gAAACgjUxuj+vHJe+Y8/+8l63TNQ8sDzAgAAAAAAAAAABQaxR0AAABl5oidp+mjh87Jef47f31BL6xuCzAjAAAAAAAAAABQSBR3AAAAlKEvHruzdp3RlPVcbyKlz1z/pHriyYCzAgAAAAAAAAAAhUBxBwAAQBmKRsK69LS9VFOV/e3cy+s69J07Xwg4KwAAAAAAAAAAUAgUdwAAAJSpHac16usnzM95/tr/Lte/nl8bYEYAAAAAAAAAAKAQKO4AAAAoY6cdsK3ePr8l5/kv3vK01rb1BJgRAAAAAAAAAAAYaxR3AAAAlDEz0/dP2kPTm2qynt/UFdf5Nz2lVMoFnBkAAAAAAAAAABgrFHcAAACUuUn11br41D1llv38oqUbdOX9rwabFAAAAAAAAAAAGDMUdwAAAFSAg+c26xOHz815/kf/eFHPrNocXEIAAAAAAAAAAGDMUNwBAABQIT73tnnac9uJWc8lUk7n3fCUOmOJYJMCAAAAAAAAAACjRnEHAABAhagKh/Sz9++l+upw1vOvtXbqm395LuCsAAAAAAAAAADAaFHcAQAAUEG2n1Kvb717Qc7zNz22Snc880aAGQEAAAAAAAAAgNGiuAMAAKDCvGfvWTpxr5k5z3/5tme1alNXgBkBAAAAAAAAAIDRoLgDAACgwpiZvvXuBdpmUm3W8+09CX3m+icVT6YCzgwAAAAAAAAAAIwExR0AAAAVqKmmSj99/94Khyzr+SdWbNYP/74k4KwAAAAAAAAAAMBIUNwBAABQofbdfpLOO2qnnOevvP81/ev5tQFmBAAAAAAAAAAARoLiDgAAgAp27lt31AGzJ+c8//mbntLKjV0BZgQAAAAAAAAAAIaL4g4AAIAKFg6Zfnba3ppcX531fFtPQp+6/kn1JlIBZwYAAAAAAAAAAPJFcQcAAECFmz6hRpecupfMsp9/euVmfe9vLwSbFAAAAAAAAAAAyBvFHQAAAOPA4fOm6twjdsx5/jeLlunvi1cHmBEAAAAAAAAAAMgXxR0AAADjxGeP3kkHzpmc8/wXbnlGKzZ0BZgRAAAAAAAAAADIB8UdAAAA40QkHNKlp+2t5obqrOfbexI69w9PKJZIBpwZAAAAAAAAAAAYDMUdAAAA48i0phr99P17yyz7+Wdf36Lv3PlCsEkBAAAAAAAAAIBBUdwBAAAwzhyyY7M+c+ROOc9f89By3fHMGwFmBAAAAAAAAAAABkNxBwAAwDj0maN20iE7Tsl5/n9vfVavtXYGmBEAAAAAAAAAAMiF4g4AAIBxKBwy/eTUvTW1MZr1fEcsoXOve0I98WTAmQEAAAAAAAAAgEwUdwAAAIxTUxuj+tn791bIsp9/fnWb/t8dzwebFAAAAAAAAAAAeBOKOwAAAMaxg+ZO0eeOnpfz/B8eXqE/PfV6gBkBAAAAAAAAAIBMFHcAAACMc+e+dUcdtlNzzvNfue1ZvbK+I8CMAAAAAAAAAACAH8UdAAAA41woZPrJqXuppSma9Xxnb1LnXveEunuTAWcGAAAAAAAAAAAkijsAAAAgaUpDVJeeto/CIct6fsmadl345+cCzgoAAAAAAAAAAEgUdwAAACDtgDmTdcExO+c8f+NjK3Xr46sCzAgAAAAAAAAAAEgUdwAAAMDnnLfsoLfuPDXn+a/+cbFeXNMeYEYAAAAAAAAAAIDiDgAAAPQLhUwXn7KXZk6oyXq+O57UOdc+pi3d8YAzAwAAAAAAAABg/KK4AwAAAANMqq/WpR/YR5GQZT2/bEOXPnvDk0qlXMCZAQAAAAAAAAAwPlHcAQAAgDfZd/tJ+tKxu+Q8f8+L6/WTu18OMCMAAAAAAAAAAMYvijsAAACQ1VmHzdExu7XkPP+zu1/WP59bE2BGAAAAAAAAAACMTxR3AAAAICsz00Wn7Km5U+tz9jn/pqe1dF1HgFkBAAAAAAAAADD+UNwBAACAnBprqvSrj+ynhmgk6/mOWELnXPuY2nviAWcGAAAAAAAAAMD4QXEHAAAABjV3aoMuOXWvnOdfWd+pz9/0tFIpF1xSAAAAAAAAAACMIxR3AAAAYEhv261Fnzlqp5zn//n8Wl1+z9IAMwIAAAAAAAAAYPyguAMAAAB5+exRO+moXablPH/xXS/pniXrAswIAAAAAAAAAIDxgeIOAAAA5CUUMl186l6a01yf9bxz0mdueFLLWjsDzgwAAAAAAAAAgMpGcQcAAADyNqG2Sld8eF/VVYeznm/vSeicax9XZywRcGYAAAAAAAAAAFQuijsAAAAwLPNaGnXRyXvmPP/i2nZ98ZZn5JwLMCsAAAAAAAAAACoXxR0AAAAYtnfsPkOfOGJuzvN3PrtaV9z3aoAZAQAAAAAAAABQuSjuAAAAwIhccMzOOmyn5pznf/j3Jbr/5fUBZgQAAAAAAAAAQGWiuAMAAAAjEg6ZLj1tb207uTbr+ZSTPn39k1q5sSvgzAAAAAAAAAAAqCwUdwAAAGDEJtZV64oP7aeaquxvKzd3xXXOtY+ruzcZcGYAAAAAAAAAAFQOijsAAAAwKrvNbNIP3rtHzvPPr27Tl297Rs65ALMCAAAAAAAAAKByUNwBAACAUTtxr1n62GFzcp7/41Nv6OpFy4JLCAAAAAAAAACACkJxBwAAAMbEl47dRQfPnZLz/Hf/+oLufWl9gBkBAAAAAAAAAFAZKO4AAADAmIiEQ7r0tL01a2Jt1vPJlNOnrntCL61tDzgzAAAAAAAAAADKG8UdAAAAGDNTGqL65Yf2VXUk+9vM9lhCZ/72UW3oiAWcGQAAAAAAAAAA5YviDgAAAIyp3beZoO+9Z/ec51dt6tbZ1z6unngywKwAAAAAAAAAAChfFHcAAABgzL133210zlt2yHn+8eWb9OXbnpVzLsCsAAAAAAAAAAAoTxR3AAAAoCC+eOwuettuLTnP3/7k67r8nqUBZgQAAAAAAAAAQHmiuAMAAAAFEQ6ZfnLqXtptRlPOPj/+50u685nVAWYFAAAAAAAAAED5obgDAAAABVMfjejXZ+ynaY3RnH3Ov+kpPb1yc3BJAQAAAAAAAABQZijuAAAAQEHNmFCrq07fTzVV2d96xhIpnXXNY3pjc3fAmQEAAAAAAAAAUB4o7gAAAEDB7bHNRF18yl45z69vj+mjv3tMnbFEcEkBAAAAAAAAAFAmKO4AAABAII7bfYa+8Padc55/YXWbzrvhSSVTLsCsAAAAAAAAAAAofRR3AAAAIDCfPGKuTtpnVs7zd72wTt//2wsBZgQAAAAAAAAAQOmjuAMAAACBMTN976Tdtf/sSTn7XHn/a7r+kRUBZgUAAAAAAAAAQGmjuAMAAACBikbCuuLD+2m7yXU5+3ztj4v14NLWALMCAAAAAAAAAKB0UdwBAACAwE2ur9bVZ+ynxppI1vOJlNPHf/+4Xl3fEXBmAAAAAAAAAACUHoo7AAAAUBQ7TmvU5R/YR+GQZT3f1pPQmb99VJs6ewPODAAAAAAAAACA0kJxBwAAAIrmLfOm6sJ3zc95ftmGLn3iusfVm0gFmBUAAAAAAAAAAKWF4o4iMLN5ZvYjM3vMzDaZWczMVpjZ/WZ2gZlNDyCHkJm908yuN7NXzazTzNrNbImZ3WJm7zazqlHEP8LMrk7HazezLjN72czuNLMPmVndKGLvY2aXm9kzZrbFzHrM7DUzu9vMPm5mE0caO8f97Zh+jJyZXTiWsQEAgPThhdvrjINn5zz/31c36su3PSvnXHBJAQAAAAAAAABQQijuCJCZRczsh5JekHSBpH0lTZRULWlbSYdK+pGkV83s4wXMY0dJD0r6s6T3S5ojqU5Sg6SdJb1X0u2SnjCzBcOM3WJmd0q6R9L/pOM1SKqVtKOk4yRdK2mJmR02zNgNZvZbSY9L+qSk3SU1SYpKmi3pSEm/kPSKmb1nOLEHuc+wpKvlPUYAAKBAvnr8rjpi56k5z9/6xCr96B8vBpgRAAAAAAAAAAClg+KOgJhZRNItkr6goX/utZJ+YWaXFCCP+ZIWSTowj+4LJD1iZgvzjD1T0v3yCjiGsq2ke8zspDxjN0r6l6TT8+g+WdJtZnZePrGHcJmkYRWhAACA4YuEQ7r0tL01r6UhZ5+f/+cV/XbRawFmBQAAAAAAAABAaaC4IzjfkXSi73itpE/IK3KolbSrpO9K6vX1+ayZ/c9YJZAukPijpGm+5rskvU3SJHmziBwtr4iiT62k29OFG4PFjki6SdJOvubHJb1bUrO82TsOlnSj73xY0jVmtnse6V8pyV9kslTShyRNlzfryN7yZu3wz9d+kZm9LY/YWZnZxZIKNoMKAAAYqLGmSr8+fX9Nqc89YdY373hedzzzRoBZAQAAAAAAAABQfBR3BCBdvHCBr+lVSXs5537pnFvlnOtxzi1xzv2fpMMldfr6XmRmE8Yola/LWxqlz+WSjnHO3eWc2+yc2+Kcu1vS2yX92NdvuqRvDxH7HEmH+I7/JOkg59yfnHMbnHOdzrmHnHPvl/RpX796ST8ZLLCZHS/pVF/Tw5L2ds5d55xb65zrds495Zz7pKSTJCXT/cKSLksXnuTNzJrM7FZJnxvOdQAAYPS2nVynK0/fTzVV2d+mOiedf+PTevCV1oAzAwAAAAAAAACgeCjuCMY3tPVnnZL0PufcmmwdnXP/leSfrWOSBhaGjIiZNWtgUcXjkj7jnHOZfdNtX5R0p6/5I2a2c47YVZK+6mtaJemDzrl4tv7Oucsk/dzXdKSZHTVI+t/07XdKeq9zriNH7D9K+rKvaZ7yW8pFkmRme8n72eS1XAwAABh7+2w3SZedto/CIct6vjeZ0tnXPK7n3tgScGYAAAAAAAAAABQHxR0FZmYtGrgcy53OuScHu8Y5d7OkR3xNZ5pZ9k838vcRSVHf8Xedc6lBcugr8OgTlnRGju7vlDe7R59LnHOdOfr2+Zqkbt/xWdk6mdk+kvb1NV3tnHt9iNiXSPL3yRo7436azewySY9q4Owm64e6FgAAjL2jd2vRd9+zIOf5jlhCZ/zmUa3c2BVgVgAAAAAAAAAAFAfFHYV3nCT/siA35HndH3z7MzVwyZOR8BeYdGjgrBxZOeeel/SUr+l9ecSWpBvziL1R0j98TSeYWU0esYf8+TnnEpJu9jUdaGbb5upvZm+TtFTSuRr4WP1b0rFD3R8AACiMU/ffThccMy/n+fXtMX3k6ke0oSMWYFYAAAAAAAAAAASP4o7COzLj+J48r/tPxvFxI00gXTRxkK/pQedcvp+C+PPY0cyyfcLi/ze+lMfMGtliN0h6yxCxuzRwRpN8Y5ukdwzSd76kCRn3c76kt0namOf9AQCAAjj3rTvqIwdtn/P8a62dOvO3j6ozlggwKwAAAAAAAAAAgkVxR+Ht4dtf55xbned1z0nyf0qx3yhy2FVSle/4qWFcm9l3QB5mNknSNoWInba7b39xelaOsYqdyUm6XtJ859wlgy1bAwAAgmFm+sY75+sdC6bn7PP0qi069w9PKJ7kpRsAAAAAAAAAUJko7iggMzNJO/uaXs732nQRwwpf006jSGWXjOO885D0asZxZh4Fi21mMzRwRo3hxF6pgcUxg/38eiVdJ2lf59wHnHPLhnE/AACgwMIh0yWn7qUD50zO2ec/L67Xl259Rs65ADMDAAAAAAAAACAYkWInUOEmSYr6jt8Y5vVrJO2Q3t9msI5DmJFxPJw81mQcZ+ZRkrGdcykzWydpZo7Y/r4/l/TzfGMXgplNkzR1mJfNLUQuAACUopqqsH71kf106hUPacma9qx9bnvidU1rrNH/viOz9hQAAAAAAAAAgPJGcUdhTcs43jjM6zf59iNm1uicy/5pRuHy2JRxnPmV2RHHds7FzaxTUv1Yx07bpK3FHbm/6lsaPinpG8VOAgCAUjahtkq/O/MAnfTzB/X65u6sfX557yua1hjVmYfOCTg7AAAAAAAAAAAKh2VZCqsh43i4hRkdGceNRchjqBzG8t8YZGwAAFCGWppq9LszD9DEuqqcfb515/P6y9PDnTANAAAAAAAAAIDSRXFHYUUzjuPDvD6zf+5PMQqXx1A5jOW/McjYAACgTO04rUFXn7G/aqqyv5V1Tjr/pqf04NLWgDMDAAAAAAAAAKAwKO4orHDGcWqY12f2H+njNZo8hsphLP+NhYwtM7NhXh+kn0taMMztxKJkCgBACdhnu0m6/AP7KBzK/vIeTzqdfe3jWvz6loAzAwAAAAAAAABg7EWKnUCFS2QcZxYrDCXz8YkVIY+hchjLf2MhY8edc26Y1wfGObdO0rrhXFPatSoAABTeUbu26Hsn7a4v3vJM1vMdsYTO+M2juuXjB2l2c33A2QEAAAAAAAAAMHaYuaOwujKOa4Z5fWb/kRZ3jCaPoXIYy39jkLEBAEAFOGW/bfWFt++c83xrR0wfvOphrdqU+bYCAAAAAAAAAIDyQXFHYW3MOG4a5vX+/ilJm4uQR2bfDWMYW5IaCxjb3z8zNgAAqBCfPGKuTj9o+5znX9/crQ9c+bDWbOkJMCsAAAAAAAAAAMYOxR2FtVaSfymQqcO8vsW3v8E5lxxhHmsyjoeTR0vGcebSISOObWaTJVUVInaaP/dhLXkCAADKh5np6++cr+N2n56zz4qNXfrAVf/V+nYm8wIAAAAAAAAAlB+KOwrIOReTtNrXtM0wQ/j7vzaKVDKvHU4emX0zYxUy9nJ5M5YMO7aZNWngrCCj+fkBAIASFw6ZLj5lLy3cYXLOPq+u79SHrnpYGzt7A8wMAAAAAAAAAIDRo7ij8Bb79ueZWV4/czObJmlSjjijyUGSdh3GtbsMEetVSf5F7Mcsdro4ZmkhYgMAgMpTUxXWVafvr723m5izz4tr2/XhXz+sLd3x4BIDAAAAAAAAAGCUKO4ovId9+/WSdsvzugMzjv870gScc6slrfQ17T+My/159Ep6IiN2UtLjvqb9zMxGEFvK/m/0//zmmdmEMYwNAAAqTEM0ot/+zwFaMKspZ5/n3mjT6Vc/oo5YIsDMAAAAAAAAAAAYOYo7Cu+fGcfH53ndCRnH/xrDPPYxsxlDXWBmNZKO8jU96JzrHCJ2s6QD8szJ/7NY5px7eYjYIUnH5hnb//PrlvRAntcBAIAyN6G2SteeeaB2md6Ys89TKzfrzN88qq5eCjwAAAAAAAAAAKWP4o7Ce1ADZ80428yqB7vAzJolneZresA5t2yUedzovwtJ5+ZxzemS/DNl/D5Hv5syjj89VGAze7uknfOI/RcNXPblU3nE3lXS0b6mW51z3UNdBwAAKsek+mpd+9EDNXdqfc4+jyzbqLOveVw98WSAmQEAAAAAAAAAMHwUdxSYcy4l6XJf0w6SLs7V38xCkn4ryf9V05+OQSp3SXred3yBmR0ySB47S/q+r2mtpBuy9XXOvSTp776mD5jZyYPEnibpCl9TT8axP/YWSdf4mg41swsGiV0n6VoNfG7/LFd/AABQuaY2RnXdWQu1/ZS6nH0eWNqqT/z+cfUmUgFmBgAAAAAAAADA8FDcEYzLJK3wHZ9rZpellz3pZ2YTJd2sgcuVPOCcuyVbUDObbWbOv+VKwDnnJP2vrykq6S9m9q4scQ+RVwwy0df81RxLsvT5iqS+ec1N0jVmdlaW2LtK+rek7X3NFznnVg0S+9uS2nzHPzCzr5pZOCP2LHlFJvv6mq9zzj06SGwAAFDBpk+o0XVnHahZE2tz9rnnxfX69PVPKJ6kwAMAAAAAAAAAUJrM+8wfhZYumPiXJP8nC62S7pC0Rl6xwzslNfjOb5C0r3NueY6YsyW95m9zztkQefxMb1425XFJiyQl5RVGvCXj/C3OuZwzcfhiny/poozmFyXdLW9plQWSjtHAoqKHJB3unIsPEftkeTOH+K9dKelvkjZJmifpOHlFK31ekffz2zJU7oPc72wN/Bl/0zl34UjjjSUzmy9pcd/x4sWLNX/+/CJmBABA6Vq+oVOnXPGQ1rbFcvZ5554z9ZNT91I4NOjbKQAAAAAAAADAOPTcc89pwYIF/qYFzrnngrr/SFB3NN455xalZ8m4TVuXXGmWdEaOS9ZIOjZXYcconCcpLOmTvrZ9NXC2C78/SvpQPoGdcxebWbWk72hrEcbO6S2bByUdP1RhRzr2zemZTq6SVJ1u3lbS2TkueVHSMaMp7AAAAJVj+yn1uu6shXr/rx5Sa0dv1j5/efoNRSMh/fC9eyhEgQcAAAAAAAAAoISwLEuAnHN3SdpF0nWSenJ065L0S0nznXNPFyAH55w7V9I7JD01SNdXJJ3lnHuPcy73V1zfHP/7kg6SdJ+kXNPCrJb0RXkzdmweRuxrJe0hb7aTRI5umyV9X9I+zrkVOfoAAIBxaMdpDfr9WQdqYl1Vzj63PL5KX/vTYjG7HQAAAAAAAACglLAsS5GYWYOkIyRtJ2mSpDZ5s0085JxrDzCPuZIOlDRDUpWk9fKWaXnajfLJYWYzJR0qaaa85Wg2Snpa0mPOuVzFGfnGniLpcEmz5M2EslnSc5Ieds7lKpypKCzLAgDAyCx+fYtOu/K/au/J/XbkzEPm6Gsn7CozZvAAAAAAAAAAALAsy7jlnOuQNwNFsfN4Rd4sHYWI/YakmwoUe4O8JW4AAACGZcGsCfrdmQfow1c9rM7eZNY+Vy96TdWRkL507M4UeAAAAAAAAAAAio5lWQAAADDu7LPdJF19xv6qqcr9dviX976ib9/5Aku0AAAAAAAAAACKjuIOAAAAjEsH7jBFV31kf1VHcr8l/vUDr+mrf1ysVIoCDwAAAAAAAABA8VDcAQAAgHHr0J2adcWH9lVVOPfSK9c9vEIX3PK0EslUgJkBAAAAAAAAALAVxR0AAAAY1966yzRdeto+CodyF3jc9sTrOu+Gp9SboMADAAAAAAAAABA8ijsAAAAw7h27YLouO21vRQYp8Ljz2dX65HWPqyeeDDAzAAAAAAAAAAAo7gAAAAAkSe/YfYZ+9ZF9VR3J/Rb5rhfW6WPXPKbuXgo8AAAAAAAAAADBobgDAAAASDtylxb95oz9VVsVztnn/pdbdfrVj6i9Jx5gZgAAAAAAAACA8YziDgAAAMDnkB2bdc1HD1BDNJKzzyPLNupDv35Em7t6A8wMAAAAAAAAADBeUdwBAAAAZNh/9mRdd9aBmlBblbPP0ys367QrH1ZrRyzAzAAAAAAAAAAA4xHFHQAAAEAWe247UTecvVBT6qtz9nlhdZtOveIhrW3rCTAzAAAAAAAAAMB4Q3EHAAAAkMOuM5p04zkHqaUpmrPPK+s7dcoVD2nVpq4AMwMAAAAAAAAAjCcUdwAAAACD2HFag2465yDNmlibs8/yDV065ZcP6bXWzgAzAwAAAAAAAACMFxR3AAAAAEPYfkq9bv74QZrTXJ+zzxtbenTKFQ/ppbXtAWYGAAAAAAAAABgPKO4AAAAA8jBzYq1uPGeh5rU05Oyzvj2mU694SItf3xJgZgAAAAAAAACASkdxBwAAAJCnaY01uuHsg7RgVlPOPpu64jr1iod030vrA8wMAAAAAAAAAFDJKO4AAAAAhmFyfbWuO2uh9t5uYs4+nb1JnfnbR3XL46uCSwwAAAAAAAAAULEo7gAAAACGaUJtla796IFauMPknH0SKacLbn5al/37ZTnnAswOAAAAAAAAAFBpKO4AAAAARqAhGtFvzjhAb5k3ddB+P/7nS/rK7YuVSKYCygwAAAAAAAAAUGko7gAAAABGqLY6rCs/sq+O333GoP2uf2SFzrn2cXX1JgLKDAAAAAAAAABQSSjuAAAAAEYhGgnr0tP21kcPnTNov7uXrNNpVz6s1o5YQJkBAAAAAAAAACoFxR0AAADAKIVCpq+dsJu+evyuMsvd7+mVm/XeXzyoZa2dwSUHAAAAAAAAACh7FHcAAAAAY+Ssw3bQZafto+pI7rfZyzd06aRfPKgnV2wKMDMAAAAAAAAAQDmjuAMAAAAYQ8fvMUO//+iBaqqJ5OyzsbNXp135X/3r+bUBZgYAAAAAAAAAKFcUdwAAAABj7IA5k3XrJw7WrIm1Ofv0xFM659rH9Pv/Lg8wMwAAAAAAAABAOaK4AwAAACiAnVoaddsnD9auM5py9kk56at/XKwf/WOJnHMBZgcAAAAAAAAAKCcUdwAAAAAF0tJUo5vOWajDdmoetN/l97yiz9/8tHoTqYAyAwAAAAAAAACUE4o7AAAAgAJqrKnSr0/fXyftM2vQfrc98brO/O2j2tIdDygzAAAAAAAAAEC5oLgDAAAAKLDqSEgXnbynPvXWHQft98DSVr3n8kVauq4joMwAAAAAAAAAAOWA4g4AAAAgAGamC96+s77zngUKWe5+r7Z26j2XL9K/l6wNLjkAAAAAAAAAQEmjuAMAAAAI0AcP3F6/+vB+qqnK/Va8PZbQR3/3mC6/Z6mccwFmBwAAAAAAAAAoRRR3AAAAAAE7ercW3XD2QZpcX52zj3PSj/7xoj59/ZPq6k0EmB0AAAAAAAAAoNRQ3AEAAAAUwV7bTtRtnzhYc6fWD9rvjmdW632/eEirNnUFlBkAAAAAAAAAoNRQ3AEAAAAUyezmet1+7iE6cpdpg/Z7fnWb3nXZIv331Q0BZQYAAAAAAAAAKCUUdwAAAABF1FRTpSs/sp/OfevcQftt7OzVh656WNc+tEzOuYCyAwAAAAAAAACUAoo7AAAAgCILh0xfePsuuuwDe6u2KpyzXyLl9LU/Pacv3/asYolkgBkCAAAAAAAAAIqJ4g4AAACgRJywx0zd8omDNGti7aD9bnh0pT5w5cNa194TUGYAAAAAAAAAgGKiuAMAAAAoIfNnTtCfP3WIFu4wedB+jy/fpHddukhPr9wcTGIAAAAAAAAAgKKhuAMAAAAoMVMaorr2owfq9IO2H7TfmrYenXzFQ7rtiVUBZQYAAAAAAAAAKAaKOwAAAIASVBUO6ZsnLtD3T9pdVWHL2a83kdL5Nz2tb93xvHoTqQAzBAAAAAAAAAAEheIOAAAAoIS9/4DtdMPZC9XcEB20368feE0nX/GQVm7sCigzAAAAAAAAAEBQKO4AAAAASty+20/WXz59iPbYZsKg/Z5euVnH/ex+/e3Z1QFlBgAAAAAAAAAIAsUdAAAAQBmYMaFWN51zkN6z96xB+7X3JPSJ657Q1/64WD3xZEDZAQAAAAAAAAAKieIOAAAAoEzUVIV18Sl76qvH76qQDd732v8u13t+/qBeXd8RTHIAAAAAAAAAgIKhuAMAAAAoI2amsw7bQb878wBNqa8etO8Lq9t0wqUP6PYnVwWUHQAAAAAAAACgECjuAAAAAMrQYTtN1V/PO0wLd5g8aL+u3qQ+d+PT+sLNT6urNxFQdgAAAAAAAACAsURxBwAAAFCmWppqdN1ZC/XZo3cacpmWmx9fpXddtkhL1rQFkxwAAAAAAAAAYMxQ3AEAAACUsXDI9Nmj5+m6sxZqWmN00L5L13XoxMsW6fpHVsg5F1CGAAAAAAAAAIDRorgDAAAAqAAHzZ2iv513mA6fN3XQfrFESl++7Vl95oan1N4TDyg7AAAAAAAAAMBoUNwBAAAAVIgpDVH95oz99eV37KLIEOu0/OXpN3TCpQ/o2VVbAsoOAAAAAAAAADBSFHcAAAAAFSQUMp1z+Fzd9PGDNGti7aB9l2/o0km/WKQr7n1FyRTLtAAAAAAAAABAqaK4AwAAAKhA+2w3SX/9zGF6+/yWQfvFk07f+9sSnfzLB/Xq+o6AsgMAAAAAAAAADAfFHQAAAECFmlBXpV9+aF99813zVR0e/K3/Eys26x0/vV+/fuA1pZjFAwAAAAAAAABKCsUdAAAAQAUzM51+8Gzd9smDNXtK3aB9Y4mUvnXH83r/r/6r5Rs6A8oQAAAAAAAAADAUijsAAACAcWDBrAm64zOH6cS9Zg7Z95FlG3XsT+7XNQ8tYxYPAAAAAAAAACgBFHcAAAAA40RDNKKfnLqXfvi+PdQQjQzatzue1Nf/9Jw+eNXDWrmxK6AMAQAAAAAAAADZUNwBAAAAjCNmplP221b/+NxbdOiOzUP2f+jVDTr2J/fpuoeXyzlm8QAAAAAAAACAYqC4AwAAABiHZk2s1bUfPUDffvcC1VWHB+3b2ZvU/92+WB/+9SN6fXN3QBkCAAAAAAAAAPpQ3AEAAACMU2amDy3cXv/47Fu0cIfJQ/Z/YGmr3n7Jfbrx0RXM4gEAAAAAAAAAAaK4AwAAABjntp1cpz+ctVDffNd81VYNPotHRyyhL936rM74zaNavYVZPAAAAAAAAAAgCBR3AAAAAFAoZDr94Nn623mHaf/Zk4bsf+9L63XMJffpmoeWKZliFg8AAAAAAAAAKCSKOwAAAAD0m91crxvOPkhfPX5XRSOD/7rQ3pPQ1//0nN59+SI9tXJzMAkCAAAAAAAAwDhEcQcAAACAAcIh01mH7aC/nneY9t5u4pD9n319i97z80X6yu3PanNXb+ETBAAAAAAAAIBxhuIOAAAAAFnNndqgWz5+sL78jl1UPcQsHs5Jf3h4hY686F7d9NhKpViqBQAAAAAAAADGDMUdAAAAAHIKh0znHD5Xd376UO25zYQh+2/s7NUXb3lGp1zxkF5Y3RZAhgAAAAAAAABQ+SjuAAAAADCknVoadesnDtaXjt1FNVVD/xrx2PJNOuHSB/StO55Xe088gAwBAAAAAAAAoHJR3AEAAAAgL5FwSJ84Yq7uOv9wHbNby5D9kymnXz/wmo666F795ek35BxLtQAAAAAAAADASFDcAQAAAGBYtplUp199ZD9dfcZ+2nZy7ZD917XH9Onrn9SHf/2IXlnfEUCGAAAAAAAAAFBZKO4AAAAAMCJH7tKif33ucH3myB1VHR76V4sHlrbq2J/cpx//40V19yYDyBAAAAAAAAAAKgPFHQAAAABGrKYqrPOP2Vn/+NxbdNhOzUP2jyedLrtnqY686D+65fFVSqZYqgUAAAAAAAAAhkJxBwAAAIBRm9Ncr2vOPECXf2AfTW+qGbL/6i09uuDmp3X8z+7XvS+tl3MUeQAAAAAAAABALhR3AAAAABgTZqbj95ihuz5/uD522ByFQzbkNUvWtOv0qx/Rh3/9iBa/viWALAEAAAAAAACg/FDcAQAAAGBMNUQj+r/jd9OdnzlU+8+elNc1Dyxt1QmXPqDP3fiUVm3qKnCGAAAAAAAAAFBeKO4AAAAAUBC7TG/STeccpItO3lNT6qvzuub2J1/XkT++V9/96wva0hUvcIYAAAAAAAAAUB4o7gAAAABQMGam9+67jf79+SN0xsGzFcljqZbeZEq/uu9VHfbDf+tX972inngygEwBAAAAAAAAoHRR3AEAAACg4CbUVenCd83XXecfruP3mJHXNW09CX33r0t01EX36vYnVymVcgXOEgAAAAAAAABKE8UdAAAAAAIzu7lel39gH93+yYN1wJzJeV3z+uZufe7Gp3XCpQ/o/pfXFzhDAAAAAAAAACg9FHcAAAAACNze203SjWcv1FUf2U87TmvI65rnV7fpw79+RKdc8ZAWLW2Vc8zkAQAAAAAAAGB8oLgDAAAAQFGYmY7erUV/P+8wff+k3TWtMZrXdY+8tlEfvOphvfcXD+qeF9dR5AEAAAAAAACg4lHcAQAAAKCoIuGQ3n/AdvrPF47Q5982Tw3RSF7XPbFis/7nN4/qxMsX6Z/PraHIAwAAAAAAAEDForgDAAAAQEmoq47o00ftpP984QidftD2ioQsr+ueWbVFZ1/7uN7x0/t15zOrlUpR5AEAAAAAAACgslDcAQAAAKCkNDdE9c0TF+hf5x+u43afnvd1S9a069w/PKFjfnKf/vTU60pS5AEAAAAAAACgQlDcAQAAAKAkzWmu188/uK9u++TBOnjulLyvW7quQ+fd8JSOvvhe3fzYSsWTqQJmCQAAAAAAAACFR3EHAAAAgJK2z3aT9IePLdStnzhIh8+bmvd1r7V26gu3PKO3/vg/+sPDKxRLJAuYJQAAAAAAAAAUDsUdAAAAAMrCvttP1u/OPEB/PPcQHb3rtLyvW7WpW1+5/Vkd/sP/6PJ7lmpTZ28BswQAAAAAAACAsUdxBwAAAICyste2E3XV6fvrzs8cqncsmJ73dWvaevSjf7yog75/t7582zN6aW17AbMEAAAAAAAAgLFDcQcAAACAsjR/5gT94kP76p+fe4vetedMmeV3XU88pesfWaljLrlPH7rqYd39wlqlUq6wyQIAAAAAAADAKFDcAQAAAKCszWtp1M9O21t3nX+4TtpnlsKhPKs8JD2wtFUf/d1jOurie/XbRa+pI5YoYKYAAAAAAAAAMDLmHN9QA8qRmc2XtLjvePHixZo/f34RMwIAACgNKzZ06ef/WapbHl+lxDBn5GiMRnTK/tvq9INma7spdQXKEAAAAAAAAEC5ee6557RgwQJ/0wLn3HNB3T8zdwAAAACoKNtNqdP337uH7v3iW/XhhdsrGsn/1572WEK/fuA1Hf7je3T2NY/poVc2iIJ4AAAAAAAAAMXGzB1AmWLmDgAAgPxs7OzV9Y+s0DUPLdPattiwr991RpM+vHB7vXPPGWqsqSpAhgAAAAAAAABKXbFn7qC4AyhTFHcAAAAMTzyZ0l+fXa2rFy3T0ys3D/v62qqwjtt9hk7df1vtP3uSzGzskwQAAAAAoIIlU06xRFK9iZS3JTNu01ss47g3mVI8mVI86ZRMpZRMSclUSomUU9K3Jd60v7Wvk+Sc1PfJaN9npK7/P5JL7zjnbX1CISlkppCZwiGTmRROH4dCppBJ4ZD19+k/DpmqwiFVh73bSMZ+VdhUnWs/ElJNVdjbIiFF07eRMAszAMVS7OKOSFB3BAAAAADFVBUO6cS9ZunEvWbpiRWb9JtFy/TXZ1crmcqv4L07ntStT6zSrU+s0pzmep283zZ63z7baFpTTYEzBwAAAAAgOPFkSp2xhDpiCXX1JtURS6izf0uqs9e77Y4n1RNPqrvX2++OJxVL33ptqTed702kiv3PK3uRkCnqK/yI9hV+VIX62+uqw6qrjqi+Oqza9G1dNJJuD6u+Or0f7euTbouGFY2Ei/1PBJADM3cAZYqZOwAAAEZv9ZZuXfvQcv3hkRXa3BUf9vXhkOmtO0/VKfttq7fuMk1VfHsGAAAAAFAkqZRTZ29CbT0JtffE1dadvu2Jq70nobbu9G1Por+tr2ijv4CjlwKM8a46HFJjTUQNNRHvNhpRQ7RKTQPaqtToO99Y4x1PqK3ShNoq1VWHmfEUFanYM3dQ3AGUKYo7AAAAxk53b1J/fOp1Xf3Aa3p5XceIYjQ3RPXefWbp5P221Y7TGsY4QwAAAADAeOCcU088pc3dvdrcFdfmrri29O13Zxx3xbWl29vae+JqjyXEx34oBZGQ9Rd6NKVvs2195ybVV2lSXbUm1lUxcwhKGsUdAEaE4g4AAICx55zToqUb9JtFr+nuJetGHGe/7SfplP231fG7z1B9lNUwAQAAAGC86u5NakNnTJs649rY1atNnb3a0Ond+o83d20t4GDmDIxn9dVhTayr1uR6r9hjcn11f+GH11atSXVeMcik+mpNqa9WTRUFIQgGxR0ARoTiDgAAgMJ6rbVTNzy6Qrc+/rpaO2IjilFfHdbRu7XohD1m6i3zmvn2CQAAAACUuXgypQ0dvWrtiGl9R0yt7TG1dvRqfXtMGzpj2tjZq01dvdrY4RVv9MQp1AAKrTEa0ZSGak1piKq5/za9X7+1bWpDVE21EZaMwYhR3AFgRCjuAAAACEY8mdI9S9bppsdW6p4X1yuZGtnvUI01Eb19/nSdsMcMHbJjs6rCoTHOFAAAAAAwErFEsr9go7Ujptb2Xq9woyOm9e3ptvT5zV3xYqc7LlSHQ6qOpDfffiRkioRN4ZC3HzZTuL8t8ziksMm7DUmh9Af63o1/3zvaur/1nElyklLOKeWkVMop5ZySKW/2z+Sb2tPHzjtOJJ3iyZTiyZQSKafexNb9eCKl3qRTIpVSPJFSPOnUm6QYqNCqwqbJ9dVqboj2F4M0N0Q1pb+tOl0YEtXk+mpVR/j7DbaiuAPAiFDcAQAAELx1bT269YnXdfNjK/Vqa+eI40yqq9KxC6brhD1mauEOUxQO8Y0RAAAAABhLPfHk1qKM/gKN9Cwb/qKN9pjaehLFTrfkhUyqr46oPhpRfTSs+mhEtVVh1VaHvduqsGrS+zVVofTtm8/XRLzz1ZGQopGQqsPhrUUc6UKOqrCN25kVXLpAJJ50iiWSiiVS6okn1RP3brce+/YTKcV8x929SXWlbztjCXXHvduu3mR6S6gzllR3PFnsf25ZmFBb5RV81EfV3OjNBDK1MappjVG1NNVoavp2Sn21Qvx9p+JR3AFgRCjuAAAAKB7nnB5bvkk3PrpSdz6zelR/EGluqNY7FszQCXvM0P6zJ/OHAAAAAAAYRCyR1Pr2mNa2xbSurUdr23q0tj2mtW09Wtfm3a5t66FgI606ElJTTZWaaiJqrPVum2qq1FgTUWNNRA3RKtVHw2qIeoUbDdGI6qrD/ft9tzVVoXFbcFGpUinnFX70JtKFIN5+R09CbT1xdcQSau/xjjti6baedFssoXZfn1iCGUciIVNzQ1QtTVFNbaxRS1NU0/pu+/cpAil3FHcAGBGKOwAAAEpDe09cdz6zWjc+tlJPrtg8qljTm2p03O4zdMKeM7T3thP5wxkAAACAcSORTKm1o7e/OGNtu694I120sa49po2dvcVONXD11WFNrKvWhNoqTazztgm11d5+bZUm1FapqdYr2NhauOHd1lSFi50+xoFYIqn2noQ2d8W1pTuutm7vNtfmP9/VO75mEAmHTFMbthZ8TGuKqqXv1tc2pT7KTK8liOIOACNCcQcAAEDpeWltu25+bKVue+J1bRjlHxxnTqjRkbtO01G7tOiguVP4gxwAAACAspRKOW3s6s2YWSOmNW09XvFGu3fc2hFTpX9kFTJpUl21JtVXa3JdtSbXp/frqzSprloT66o1MaOAY0JtlaojoWKnDhRMbyKlzd292twV18bOXm3u6tXGzrg2dW3d39zVq41dW/ts6Y4XO+2CC4dMzQ3Vammq0bTGqKY11Wh6U42mT6jRjPTW0lSjxpqqYqc6rlDcAWBEKO4AAAAoXfFkSouWtuqOZ1brH8+tUfsopwOurQrrkB2bdfSu03TkLtM0ralmjDIFAAAAgJGLJ1P9M22s3tKjNVvSt23e/pot3rlEqjI/iwqHTJPrq9XcEFVzQ7WmNkQ1pcEr2JhSX61JvgKOKfXVaqqpYjkGYAwkU05buuPa2BlTa0evWjti2tDRqw0dMa1P37Z2xLShs1cbOnrVEavcZZoaopH+go+WJu924HGtJtVVMTvsGKG4A8CIUNwBAABQHmKJpO5/qVV3PPOG/vX8WnWOwXSje2wzQUfuMk1H79qi+TOb+AUdAAAAwJjr7k1qTVuPVm/pflPxRt9xJc62EQmZpjT0FWykt0avcGNqo6+twSveoFgDKH3dvUltSBeCbEgXgqxP33pFIDG1tvdqQ6e39FOl1aNVR0JvLv5IzwIyfUKtZkyoUXMDy8Dkg+IOACNCcQcAAED56Ykndc+SdbrjmdW6e8la9cRTo47Z0hTVkbu06KhdpumQHZtVW83yLQAAAAByc86prSfhK9joHlCwsSY988bmrspZ9qAqbAOKMryCjeiAGTf6Cjcm1DK7BjCeJVNOm7p6+ws/Wv1FIOnbde3eElOtHbGKKQQJh0wtjVG1pGf9mN7kFX1sPfaKQ8b7MlEUdwAYEYo7AAAAyltnLKG7l6zTHU+/of+8tF69idEXekQjIR2yY7PeslOzDtmxWTtOa2BWDwAAAGAccc5pc1dcb2zp3rpESv9SKd39x11jMKNgKaipCqmlqUYtjTWa1hT19tO3UxujmuYr2OB3IwBjLZly2uAr9vDfrmvr0dq2mNa192h9e+UUgTQ3VHszfqSLP6anCz/69yfUqK46Uuw0C4biDgAjQnEHAABA5Wjvietfz6/VHc+s1v0vr1c8OTa/p01tjOrguVN0yNxmHbzjFG0zqW5M4gIAAAAIXirltLGrV6s3e0ulrBmwVMrWYo7YGBSOF1tV2DStcWuhRktTunijsaa/gGNaU42aaiIUbQAoecmU04bOmNaliz3Wtnn7a9t7+tvWtcW0viOmZAVUgTTVRDRjQq23/EvfMjD9y8J47eX6/2+KOwCMCMUdAAAAlWlLd1z3vbRe/16yTve8uG5Mp0LefkqdDp7brIPnTtHBc6doSkN0zGIDAAAAGLm+b3+vThdqDJhxY0uPVrd1a+2WmHqT5V24EQ6ZpjZE+4szWnwFG9N8hRyT6phpA8D4k0w5bezsTc/+4RV8rO0vAunpX0KrtaO32KmOWl11eGvxh28WkK23tSX5WkBxB4ARobgDAACg8iWSKT25crPuemGt/v3COr28rmNM4+8yvVGH7OgVexy4wxQ1RCt32kwAAACgWBLJlNb3FW5s9s2y0eYVbqxJf1iXKPNva2f7oK5lQo1mpAs2WiZENaU+qnCotD6oA4ByE0skta4tll5yq0drfEWBa9q2vq6U+cuKqiMhTW/KKPpoqtH0Cd5rzIwJNZrSEOzrCsUdAEaE4g4AAIDxZ/mGTv17yTrd/cI6PfzahjFbvkXyvkG3xzYTtP/sydpnu0nad/tJmtrIzB4AAADAYHoTKa1r70nPuDHwA7a+23Xt5f8B28S6qoEfsDXVavqEaP8HbNMn1KgxWp5T7ANAJUokU2rt6M1a/NG/v6Wn7GeEioRMLenXp63FH/6CkFpNa4yqKhwak/ujuAPAiFDcAQAAML6198R1/8utuvsFb/mWjZ1jPyXn9lPqtO92k7TP9l6xx7yWRr5lBwAAgHGjJ973zejuNxdvpD8ca+2IqZw/ZjGTmhui3iwbTTUDpsX3jms1valGtdXhYqcKABhjzjlt6opvnVEqPePH1iJFr72zN1nsVEfFTJqafq3rW/Jla7GidzytKaqaqqFf6yjuADAiFHcAAACgTzLl9NTKzbpnyToteqVVz6zaomQBvhrYGI1or+0mat90scde205UY03VmN8PAAAAUGgdsUT/tPVbv8ncPWDGjQ0FKKAOUjhkammMDvgga3pTjWZM3Fq8Ma2xRtWRsfk2MwCgMrX3xLe+Prb5Z6fq1pq2mNZs6damrnix0xy1yfXV6WKPgTN/9B1Pb6rRsqUvUtwBYPgo7gAAAEAu7T1xPfLaRi1aukEPvtKqJWvaC3I/ZtLOLY3ad/tJ2nu7Sdp91gTNnVqvyBhNdQkAAAAMV98yKWvbYlrbli7eaOvRuraYV8zR3qO1FfAt5Kqw+WbaqPV9+3jrt5KnNkaZeQ8AEIieeLK/WHLNlh69saVba30FIZUw25UkVbet0su/+Li/ieIOAEOjuAMAAAD5au2I6aFXvEKPRUs3aMXGroLdVzQS0q4zmrT7rAlaMKtJ82dO0LyWRr4NCAAAgFFJpZw2dfVuLdRIF254m1e4sa69R60d5T3bhiRVR0IZxRq1A75FPGNCrabUVytE4QYAoIzEkymta49tXeJsy5uXgFnbHivIbLRjpXf9cq2++lx/U6DFHZGg7ggAAAAAUBzNDVG9c8+ZeueeMyVJKzd26cFXWvXgKxu0aOkGtXbExuy+YomUnlq5WU+t3NzfVh0Oaefpjf3FHrvPmqCdpzfmtZYpAAAAKptzTm09Ca1vj2ld++CFG/Fk6X7Yk6+aqpBm9i2R4p/yvck7njmxVpPqqmRG4QYAoLJUhUOaNbFWsybW5uyTTDm1dsS2LvuypUer2wYWgqzZ0qPeZCrAzEsHxR0AAAAAMM5sO7lOp07eTqfuv52cc3p5XYf+++oGPbF8kx5fsUkrN3aP6f31JlN69vUtevb1LZJWSvLW/95pWkN/ocfO0xs1r6VR0xqj/CEbAACgAiSSKbV29PYXbXi3sazHsURlfEBTXx3WjImZS6R4xzMm1mhGU62aaiO83wUAIIdwyFt2rKWpRtp2YtY+zjlt7OzdOutHW8+A2UDWtPVo9eYedcfLewm2bCjuAAAAAIBxzMw0r8UrrPjIQbMlSWvberxCj3Sxx+LXt4z5tySTKacla9q1ZE37gPammoh2nt6onVoaNW9ag+aliz6aG6Jjev8AAAAYPuecOnuTWteWWawxsGhjfXtMG7t6VUmrwjfVRDQjPePGjIxZN2amjxtrqoqdJgAAFc/MNKUhqikNUS2YNSFrn76ZwfxLvmQrBmnvSQSc/ehQ3AEAAAAAGKClqUbv2H2G3rH7DElSTzypxa9v8Yo90tuGzsKsZd7Wk9Cjyzbp0WWbBrRPqa/WTi0N/YUo3tagiXXVBckDAABgPOnqTWhDR69aO2La0NGrDZ0xtXb0ekUcHTGta4v131bit2An1VX1z7AxfUJN/xIpMybUasZEbxaO+igfpwAAUC7MTBNqqzShtko7T2/M2a8j5hWArG3r6V8Kpr8IJD0LyMYC/Q1sJMxVUuksMI6Y2XxJi/uOFy9erPnz5xcxIwAAAIwXzjkt39Clx5dv0mPLN+mZVZv10tr2oqyBPrGuSnOa6zVnSr1mN3ubt1/HNycBAMC4lUimtLGr1yvU8BVreMUbXgFHa2dv/34lFmxIUk1VSNPTU7u3pAs2pjVGNX1C+ripRlMbo6qpChc7VQAAUKJ64sn+4o9Hnnha5518lP/0Aufcc0HlQqkpAAAAAGBYzKy/kOK9+24jSYolknp5bYeefX2LFr++RYvfaNMLq9vUW+D10zd3xfXkis16csXmN51rbohqTnOdZqcLP3ZI5zx7Sr1qq/kDPgAAKB/OObXHEulijZhaO7xijb7Cjf5ZN9IFG5u64sVOuaDCIdPUhqhamqJZCzemN9VoWlONmmoiMrNipwsAAMpYTVVY20+p1/ZT6tXY3VLUXCjuKAIzmyfpY5LeKmmupDpJayUtl/QnSb93zq0pcA4hScdL+oCkAyW1SEpJel3ebBC/l3Snc25EvwWY2RGSPiLpYEmzJIXTsV+SdL2k25xzXSOMvY+kj0o6TNL2kqKSVkt6VdLNkm5wzm0eYeyiPzYAAABAOYpGwlowa8KAtU7jyZSWruvwij3SBR/Pv9EW2DdDW9MffGQu8SJJ0xqj2mZSrbaZVNd/O2tSrbaZVKtZE2v59iYAACiYvjXgN3f1amNnrzZ3xbUpY39zV1wbO3sH7PcmC1s0Wyom1FalizOiW2fdSBdstKTbpjREFQ5RtAEAAMYXlmUJkJlFJH1X0uclhQbp2i3pfOfcLwuUx47yijcOHKLrYkmnOecWD9HPH7tF0tWSjhui60pJH3TO3T+M2A2SLpN0+hBdN0o6yzl3+zBil8RjMxwsywIAAIBylEw5vdbaN8NHm15c064X17ZrfXus2KkNMDVd/DFror8AxNtmTKhlzXUAACDJe2+zuatXm7riby7W6OrV5k5vf5Ovz6auuJKp8fV3+UjINLUxqqmNUU1L305trBlwPK0xquYGlkgBAACl67nnntOCBQv8TYEuy0JxR0DSxQO3SDpxGJf9xDn3uTHOY76kf0ualucl3ZKOdM79N4/YMyX9R9JOecZOSjrFOXdbHrEbJf1T0sI8Y0vSZ51zP80jdkk8NsNFcQcAAAAqyeauXr20tkMvrm3Xy2vb9eKadr28rkMbO3uLnVpWjdGI7xukNZo+Ierbr+EbpQAAlJFUyqmjN6G27ri2dMfV1p3wbnviauuOb23v8dq9Ag6vSGNLd2UvfzKUxmikv2jDK9DIKNhoimpqQ1ST6qoV4n0RAAAoc8Uu7uCrRsH5jgYWD6yVdKGkOyS1Spot6cOSLpBUne7zWTN7xjn3m7FIIF0g8UcNLOy4S9IPJD0myUnaT9KXJL0tfb5W0u1mtq9z7o1BYkck3aSBhR2PS/qWpAck9UjaQ9J5kk5Nnw9LusbMXnbOPTtE+ldqYGHHUnk/v7sktUnaWdLZkj4uqe+3hIvM7Hnn3L+GiF30xwYAAAAY7ybWVeuAOZN1wJzJA9pbO2J6aU27XlrbrhfXdujltd5+W0+iSJl62mMJta/r0NJ1HTn7hEOmaY3eOvB904g3N0TVnP5WanNDtZobvA8++IYqAACjE0skhy7M6PLa+8739W/viWucTaQxqKqwqbkhqsn11Rkza9RkzLwRVV01HzEAAAAEhZk7AmBmu0t6SluX+3hV0iHOuTVZ+i6UV7BQn27aJGmOc27LGOTxI3kFCn0ul/Rpl/EkMDOT9MOMvr9xzp05SOxz5S2Z0udPkk52zr2pdN3MPiXpUl/Tv51zRw0S+3h5hRZ9HpZ0tHPuTX9FNbN3y5uFo+8voy9Jmu+cy/qX31J5bEaCmTsAAAAwXjnntK49plfXd2rZhk4ta+3Uq63e7fKNXepNlN969A3RiKakiz2a+2+37k9piGpSXZUm1lVrYl2VqsKDrSYJAED56E2k1BlLqCOWUHuPd9sZS6g9llBHT0IdsXj6Nuntp/t1xhJq69k620asDF//gzSprkpTGqKaUt/33qJaU+qj6fcf1VvPNUbVGI3I+xMxAAAA/Io9cwfFHQEws1skvTd9mJK0n3PuyUH6nyxvFow+33bOfW2UOTRLWiUpmm56XNIBzrmsv/WkCzz+Iun4dFNSXpHEi1n6VklaIWl6ummVpF2cc52D5HO5pE/6mo52zt2do+9jkvZNH3ZK2tk59/ogsb8grzilz1nOuV/n6Fv0x2akKO4AAAAA3iyZclq9pVvLWrv0WmuHXmvt6i8AWbGxS4kK+VpuY01Ek+qq+ws+Jtd7RR/Z2ibUVqmptkoN1RGmQwcAjJpzTt3xpLp6k+ru9W47e71ii450cUZH5n76uK9go7N363E5FmWWgpqqUH8B6FRfocaUdHHo1uNqTa6rVoTCUAAAgFGjuKPCmVmLvGKHvvnp/uKce1ce1z0s6YD04RuStsmcYWOYeZwv6SJf03udc7cNcc1ukvxPxu87576cpd9Jkm71NX3eOXfxELEny/u51KabbnDOnZal3z7yClH6XOqc+8wQsSOSlkmalW76r3PuoCz9SuKxGSmKOwAAAIDhSSRTWrWpW8s2dOr1zd1atcnbXt/UpVWburWuPVbsFAsqZFJjTZWaaiNqqqnytvR+XwFIU00kfesd10fDaox6tw01EUUjLB8DAOXAOaeeeEpdvQmvCCNdjNEV84674kl1p895W2JAscab2uIJdfcm1RnzYmFsRUKmiekCzUn16du66nSxZlX6XLVvRq9qlkMBAAAogmIXd/AOsPCO08Cf8w15XvcHbS0gmCnpEEkPjCKPE337HZLuHOoC59zzZvaUpL3STe+T9KbijozYknRjHrE3mtk/JL073XSCmdU453qGiD3kz885lzCzmyV9Nt10oJlt65xbmdG1VB4bAAAAAAGIhEOa3Vyv2c31Wc/3xJN6Y3O3r/CjK1384R2vbe9ROX8/IuWkLemp66XuEcWoCpsaohHVRyNqSG/10YgaaiJqqN66X18dVl11WHXVEdVVh1X7pv2w6qoiqq0OqzrCN4kBVL5kyqknnvS2REqxeFI98ZR6El5bLJ5Kn/PaY+l+PX394knFEv791NZ46Tj9MeJe8UY5v2aVs2gklJ49y1+Y0Te7VrUmpdsmp48n1lexDAoAAADyQnFH4R2ZcXxPntf9J+P4OI2wgMDMaiT5Z6540DmX71fS/qOtxR07mtk859xLGX38/8aXBlsyJUvsd6f3GyS9RdI/B4ndJemRYcT+bHrfJL1D0q8GiS0V4bEBAAAAUDpqqsLaYWqDdpjakPV8byKlNVt6tKbN29Zm2V/XFlNvsnKnl48nnTZ1xbWpKz5mMSMhG1AIEq0Kq6YqpGgkpGgkrGgkpJoq7zZaFVJNJKxoVfZz0UjfteH+6/uP0zFrqsKqDodYogaoUMmUUzyZUiLllEimFE86JVIpxRNOvUmvKCKedOpNpLwtmVRvIqVY+tg7l1RvMtXfJ+bbj/ftp29jia3HcV+/vrZYuvAinqTSotzUV4e3zmyVntXKO45oYu3AGTUm1W8t3qitZpYrAAAAFAbFHYW3h29/nXNudZ7XPScpoa2P0X6jyGFXSVW+46eGcW1m3/0k9Rd3mNkkSduMYezM4o7dffuLnXOJUcTOLO4ohccGAAAAQJmojoS03ZQ6bTelLmcf55w2dvZ6BR9tPVqzJdZf/LG+I6bWjpha22Nq7eit6CKQ4UiknNp6EmrryffXvbFRHQ4NKBKpCpsi4ZAiIVN1xLutCodUFQ4pEu7bN0VCof797Of62n37/TG9/tXp68IhU9jSt+ktlD6OhEyhQc73b2YKhaRIKKSQiW9+Q845JVJOyZRTKr2fSh8nU05J59v39UmmnFIpKZFKeW1Jr6+/LZmSkqmUd+tc/34qlY7hXP9+/236/vrzcAOLLhJJp3iyryAj3Z4uzogntx4P6J8u1vD3j6eLOVLUUCAtEjI11aYLMvqWHes/3lqoMeFNbV7/SJiZpQAAAFBaKO4oIPP+orKzr+nlfK9NLy2yQtIO6aadRpHKLhnHeech6dWM48w8ChbbzGZImjDC2Cs1sAAjM3apPDYAAAAAKoiZaUpDVFMaopo/c0LOfs55BQ3+Yo8Nnd7++o5er72/GKRX3fFkgP+K8aE36X2rvl3BFpUUWsjShR4hpQs/vEIRf2FIKF0AEgpJJlPI5LWlb0PmtVv62H9r/ef7+vZdl44V0tb4fX3NNJySk+HVp+TfeThxnfPGqZOUck7OebdKH6dSkpPzCgnS5/x9nfPOOfX1TcdL9+3rn61v/33095eUvq++vinnBtyvv0iDpThQCaojof7lv/q3mozb9DbBX7SRLtZoqqlSXXWYgjcAAABUFIo7CmuSpKjv+I1hXr9GWwsIthms4xBmZBwPJ481GceZeZRkbOdcyszWSZqZI3apPDYAAAAAxiEz6/+m8Nwcy8D49cST2tTVq02dcW3u6k0vjdKrTZ3evte2dX9jZ2/gM2GgNKScV7gi6oEABMxMaohG1JguwKhPF180posx6n3nGqJVqo+G0+eqBhRw1EfDikZY2gQAAADIRHFHYU3LON44zOs3+fYjZtbonGsPOI9NGceTxyq2cy5uZp2S6sc6dtombS3uKETsPqN5bCRJZjZN0tRhXjZg1pSlS5eO9O4BAAAAlJEJkiaEpdmNkhr7Wqs0cDVOKZFMqSOWUGcsoY6+rSepzt6EOnri6XNJdcQSao8l1NkTV0dvUp09CXX0JhSLs2wMAFSiaFVINVVh1VaFVVMVUrQqrNqIt19THVFtxGurqQql+/Rtof792qqQaqoivraQaiL5zJSRSG893mFSUpfkuqR2eRsAAABQqrJ8Hlsd5P1T3FFYmV+/Gu7vJx0Zx40jiDHaPLLlMFax++L3FXcUInafQsbuiz+a3z8/Kekbo7he7373u0dzOQAAAAAAAAAAAAAgf9tKejKoOwsFdUfjVDTjOD7M6zP7V2XtVdg8hsphLP+N5Ro7W3wAAAAAAAAAAAAAAMYExR2Flbk45HDntM3sP9LHazR5DJXDWP4bCxlbNnBeyFJ5bAAAAAAAAAAAAAAAGBTLshRWIuM4s6BgKJmPT6wIeQyVw1j+GwsZO+6ccwWKLY38senzc0k3D/Oa3SVd7zt+n6Qlo8wDQPDmSvqT7/hESa8UKRcAI8M4BioDYxkof4xjoDIwloHyxzgGKgNjGXizanlLsfS5N8g7p7ijsLoyjmuGeX1m/5EWEIwmj6FyGMt/Y7nGzhZ/WJxz6yStG841AycikSQtcc49N5o8AAQvy1h+hbEMlBfGMVAZGMtA+WMcA5WBsQyUP8YxUBkYy0BOTxbrjllKorA2Zhw3DfN6f/+UpM1FyCOz74YxjC1JjQWM7e9fyNijeWwAAAAAAAAAAAAAABgUxR2FtVaSfymQqcO8vsW3v8E5lxxhHmsyjoeTR0vGcebsEiOObWaTJVUVInaaP/fM2KXy2AAAAAAAAAAAAAAAMCiKOwrIOReTtNrXtM0wQ/j7vzaKVDKvHU4emX0zYxUy9nJ5s2IMO7aZNWngrCADYpfQYwMAAAAAAAAAAAAAwKAo7ii8xb79eWaW18/czKZJmpQjzmhykKRdh3HtLkPEelVSVyFipwswlhYidpa2Yj02AAAAAAAAAAAAAAAMiuKOwnvYt18vabc8rzsw4/i/I03AObda0kpf0/7DuNyfR6+kJzJiJyU97mvaz8xsBLGl7P9G/89vnplNKFDsojw2AAAAAAAAAAAAAAAMheKOwvtnxvHxeV53Qsbxv8Ywj33MbMZQF5hZjaSjfE0POuc6h4jdLOmAPHPy/yyWOedeHiJ2SNKxecb2//y6JT0wROzMfPKNLY3+sQEAAAAAAAAAAAAAICeKOwrvQQ2cNeNsM6se7AIza5Z0mq/pAefcslHmcaP/LiSdm8c1p0vyz5Tx+xz9bso4/vRQgc3s7ZJ2ziP2XzRw2ZdP5RF7V0lH+5pudc51Z+laKo8NAAAAAAAAAAAAAAA5UdxRYM65lKTLfU07SLo4V38zC0n6raRGX/NPxyCVuyQ97zu+wMwOGSSPnSV939e0VtIN2fo6516S9Hdf0wfM7ORBYk+TdIWvqSfj2B97i6RrfE2HmtkFg8Suk3StBj63f5Yjdqk8NgAAAAAAAAAAAAAA5ERxRzAuk7TCd3yumV2WXvakn5lNlHSzBi4P8oBz7pZsQc1stpk5/5YrAeeck/S/vqaopL+Y2buyxD1EXjHIRF/zV3MsydLnK5ISfSEkXWNmZ2WJvaukf0va3td8kXNu1SCxvy2pzXf8AzP7qpmFM2LPkldksq+v+Trn3KODxC7IYwMAAAAAAAAAAAAAwFiJFDuB8cA512lmH5D0L0m16eZzJZ1qZndIWiOv2OGdkhp8l26Q9KExzOMvZnapti6bMknSn8zscUmLJCXlFUa8JePSW5xzVw0R+0kz+5Kki9JNNZKuTM+ycbe8pVUWSDpGA4uKHpL0zSFiv54uFLkhfW1I0rfkLaPyN0mbJM2TdJy8opU+r2iI5WdK5bEBAAAAAAAAAAAAACAXijsC4pxblJ4l4zZtXdajWdIZOS5ZI+lY59zyMU7lPElhSZ/0te2rgbNd+P1ReRYxOOcuNrNqSd/R1gKOndNbNg9KOt45F88j9s3p2TSuklSdbt5W0tk5LnlR0jHpZV2Gil0qjw0AAAAAAAAAAAAAAG9CcUeAnHN3mdkukn4o6b3yZrfI1CXpGkn/55zbWIAcnLylR/4i6XuS9srR9RVJ33PO/XqY8b9vZv+W9CNJh8lboiXTakmXSLrEOZfIcj5X7GvN7BFJP5Z0rLI/fzdL+qWkbznnuoYRu+iPzQis18BZT9YXKxEAo8JYBsof4xioDIxloPwxjoHKwFgGyh/jGKgMjGWgxJj3WT+CZmYNko6QtJ285VHa5M028ZBzrj3APOZKOlDSDElV8v7H/Likp90onxxmNlPSoZJmylvyZKOkpyU9Npyijhyxp0g6XNIsebNtbJb0nKSHnXM9o4xdEo8NAAAAAAAAAAAAAAASxR0AAAAAAAAAAAAAAAAlLVTsBAAAAAAAAAAAAAAAAJAbxR0AAAAAAAAAAAAAAAAljOIOAAAAAAAAAAAAAACAEkZxBwAAAAAAAAAAAAAAQAmjuAMAAAAAAAAAAAAAAKCEUdwBAAAAAAAAAAAAAABQwijuAAAAAAAAAAAAAAAAKGEUdwAAAAAAAAAAAAAAAJQwijsAAAAAAAAAAAAAAABKGMUdAAAAAAAAAAAAAAAAJYziDgAAAAAAAAAAAAAAgBJGcQcAAAAAAAAAAAAAAEAJo7gDAAAAAAAAAAAAAACghFHcAZQZM5tnZj8ys8fMbJOZxcxshZndb2YXmNn0YucIlBMz2zE9jpyZXTjCGLPM7EIzW2RmrWbWa2avm9nD6fYdRpHfZDP7gpndbWZr07HXmtnjZvZjM1switj1ZvZxM/urmb2R/jm0mtnTZvZLM1s40thAIZhZyMzeaWa/MrNn0s/XuJltNLMlZvZbMzvVzMIjiF2WY83Mqs3sg2Z2W/r9QLeZbTazxWZ2jZkdbWa850dJMbOImb3fzG40s9fMrNPMesxsuZndmn5OV40wNq/JQAkws73SY8Slt9nDvJ6xDBSYmT3lG6PD3Yb82xPjGAiWeb8vH2tmV5rZs+nnbczMVpvZv8zsfDNrGkFcxjJQAKN4Dc62HZHH/TGWgUrhnGNjYyuDTVJE0g8lJSW5QbYuSR8vdr5sbOWwSQpLus83fi4cQYwLJPUMMS4Tkr4hKTzM2B+StHmI2E7SzyXVDjP22yW9nkfsWyVNKvZjxcYm6VBJL+bxnHWSXpF09DBil+VYk7SfpCV5xL5X0rbFfgzZ2JxzkrRQ0st5PG9flXToMGPzmszGVgKbpKikZzOev7OHcT1jmY2twJukKkmxPJ6vubbpQ8RnHLOxBbhJ2kfSI3k8dzdJOnkYcRnLbGwF2kbxGpxtO2KI+2Iss7FV0GbOOQEobWYWkXSLpBOHcdlPnHOfK1BKQEUws19I+riv6ZvOuQuHcf1lks4dxl3eJul9Lo8XXzP7gryCrnz9V94b+Vgesd8v6ffyilvysVTSQufchmHkA4wZM/sfSVcq/+es5BVDfto594shYpflWEt/K+MOSfV5xm5Nx34lz/7AmDOzd8n7o0skz0uSkj7jnPt5HrF5TQZKhJn9QNIXM5rnOOeW5XEtYxkIgJntKempUYSY4ZxbkyM24xgIkJkdJ28cRYdx2Wecc5cOEZexDBSQmY3Vh7M9knZ3zi3NcT+MZaDCMEUzUB6+o4GFHWslfULStpJqJe0q6buSen19Ppv+MAxAFmZ2sQYWdgz3+k9o4BvjdklfkjRXUo2kHdLHbb4+J0m6MI/Yx0n6ga+pV94Y303emN9G3v8D/H9MWyjpV3nE3kvSb7X1jbGT9At53/KokzRdXsX1S77LdpR0s7G0A4rAzN4q77nt/2XuHknvkfd8rZbUIundkv7t6xOWdJmZvWOQ2GU51sxsG3lFn/7CjhslHSKpUVKzvJ/Ho77zzZL+bGYNQ+UOFEJ6GtabNLCw405JR0maIG/M7SXpp/KKOiRv/PzMzI4cIjavyUCJMLND5H0zcCTXMpaB4OyZcTzHOWfD2HIVdjCOgQCZ2Vv05sKOv8l7jz1N3u+Hh0v6c8alPzGzQweJy1gGCmyYr7vmnDN5Y/2hjFD/M0hhB2MZqETFnjqEjY1t8E3S7hq4FMsryjH9pbwXxw5f342SJhT738DGVkqbpCZ53xrONoXbhXnGaJH3ZrjvulZJu+Tou5Ok1b6+vZLmDhK7RtIKX/9uSW8ZJI/nMv4Nhw0S2yQ97OubknRqjr6N8j5A98f+SLEfP7bxtcn7EDjzOf7lIa75Wkb/1yRFs/Qr27Em6eaM/l/I0a9K0h8y+n692I8r2/jcJC3K9zVX0jvlTQnb13e5pOocfXlNZmMrkU1e0eHSjOdq3zZ7iGsZy2xsAW6SLvY9DzeNUUzGMRtbgFv6dXdFxnP3nEH6fzPjuft4jn6MZTa2Et0kXZ7xvP3xIH0Zy2xsFboVPQE2NrbBN3nfzO17YUpK2nuI/idnvJh9q9j/Bja2UtnkfSP45Ywx4t8uzDPOjzOuO3GI/gs1sEjr2kH6fioj9nlDxJ6jgUVd9w/S94SM2JcMEXuSpJW+/q9KihT7cWQbP5ukd2U8Z6/L87rrM677UJY+ZTnW5BV9+mPfPkTsqKQnfP23SJpc7MeWbXxtkg7KeN7elcc1P8m4Juva4LwmF//xZWPr2+Sto53rffbsIa5lLLOxBbhJutv3PLx3jGIyjtnYAtwkfSXjufvNPK65P+Oa/bL0YSyzsZXgluU5/phyfAki3Z+xzMZWoRvT0wAlzMxaNHA5ljudc08Odo1z7mZJj/iazjQzK0R+QLkws+b0+oKPypuirc/6EcSqlnSGr+lZ59yfBrvGOfdfeYVafU42s6Yc3c/27bdK+uUQsV+TV7Xd51Az2zmP2HENnDovW+xN8qbT6zNH3tSeQFDel3H8//K87tsZx8dn6VOuY+1jGcffGiJ2TNL/+Zqa5BWCAkH6QMbx9/O45uqM46MzO/CazGsySoeZHSNv2mXJ+3bdP4dxLWMZCN6evv2nRxuMccw4RrDMLKKBSy28oDf/HpzNTzOOj82Iy1gGSpCZTZF0la+pV9KHnXO9OfozloEKRnEHUNqO08B1yW/I87o/+PZnSjpkzDICyoyZvU3e9NDnauB4+rcyfonN0yGSpviORzIuo/JmJBjAzObI+1Z+n9vTH8wOJ7aU5YNbM6uVdIyv6T8uxzrJGW6SV7WdMzZQQAf69pc5517M5yLn3HMauF7oPP/5Mh9r/qLPl51zT+QR+5+SNuQRGygU/1hukzdt6lBeyjjeIUsfXpOBEmBmEyX92td0kd68FvhgGMtAgMxsGw0cc6Mu7hDjmHGMoB0h72++fb7nnIvncd0/Ja2R9Lyk/8j7Jr0fYxkoTT+Qt7xJn+86514YpD9jGahgFHcApe3IjON8/hAueW/O/Y4bfSpA2ZovaYLvuEvS+ZLeJmnjCOKNdFzeK29quD7ZxuVIYz8jadMQsQ+W96Z8WLGdcxskPTtEbGDMpWed2iTvD08pScuGGaLHtz8x41xZjjUzmytpuxHETsqbfrfP4WZWl8+1wBhZKGkXSadKuiD9nBxKbR59eE0GSsOlkrZJ778g6WvDvJ6xDARrz4zjsSjuYBwDwfI/57ok3ZrPRc65NufcDOfcfOfcW51zP8nowlgGSoyZLZR0pq/pJUnfG+IyxjJQwSjuAErbHr79dc651Xle95ykhO94v7FLCShbTtL1kuY75y5xzqVGGMc/Lp3y/EOYc26zpOW+pmzjco+M46fyjJ2Zx95mFh6L2Fn6zjCzmbk6AmPFeRY652ZIqpH03nyvNbPJkqb6mjKXYCrXsTZWsSOS9hrGtcCoOOdSzrkXnXM3OeeuzPOyfTKOX87Sh9dkXpNRZGZ2kqQPpQ+Tkk7P85t7foxlxjKCtZdvPylp8RjEZBwzjhEs/yzNDzrnusYoLmOZsYzSc7Ek8x1fkGs5Fh/GMmMZFYziDqBEpb+x7F93LNsftLNyziUkrfA17TRWeQFlqFfSdZL2dc59wDm3bJTxdvHtvzHMX6Bf9e3PyfIG1h/bSXplhLFrtPXbk9liS8P4f0pGbIn/pyBgzrm4c244M+2cpIG/+C7JOF+uY41xjPHkgozjbOsD85rMWEYRmdk0DVxf+wfOuUdHEIqxzFhGsPwzd7zonOsxs0PM7Odm9oyZbTGzHjNbYWZ3mtknzKx+iJiMY8YxApL+m7H/A9AnxzA8Y5mxjBKSLqQ+yNd0t3PuL3lcylhmLKOCUdwBlK5JGjgF1RvDvN6/FlnmiyQwbjjnfu6c+5Bzbqx+2Z3h2x/NuIxImj5I7NY8qrBzxZbePO5nZBwPJ/ehYgMlw8yqJX0xo/nPGcflOtYYx6h4ZlZjZr+UdKyveZFz7h9ZuvOazFhGcf1KW2fKelbSN0cYh7HMWEaw9vLt95jZfZIekPQJSbtLapL396ht5U1r/nNJS83sA4PEZBwzjhGcWfI+FO3T/y17M5tuZp81s3vNbKWZxczsDTP7t5l9zsyahojNWGYso0SkC7n+X0bzV/K8nLHMWEYFo7gDKF3TMo6H841laeD6ZREzaxxlPsC4Z2Y1kvxjaTTjUpImZxz7x30hY8eGWbE9VGyglHxDA6vzV0i6M6NPuY610bw3YByjJJlZ2MxqzWyBmV0g6QVJ5/i6LFOWZZl4Tc4ZGwiEmZ0u6cT0YVzecizD+cNuXxzGcvbYQEGkZ+CY62vaR9JheVw6XdJ1ZvadLDEZx9ljA4WS+YHlGjMLmdnn5H2D/hJJb0n3q5b3Yelb5S3tsNTMPpgtKGM5Z2ygWE6UNN93fKdz7pGhLmIs54wNVAyKO4DS1ZBx3D7M6zsyjinuAEav0OPSH7+cYgMlwczeI+nLGc1fc87FMtrKdayN5v9BjGOUqn9K6pL3rf8fSZrtO3eHpLc459ZmuY7X5OyxgYIzs20l/dTX9N1RzJLHWM4eGyiUPfTmvwenJN0g6W3yPgSukfd6/D/yXp/9vmJmn85oYxxnjw0UypSM425Jf5BXvFE3xLVTJf3ezL6R5RxjOXtsoFi+lHGcOYtHLozl7LGBikFxB1C6ohnH8WFen9m/ahS5APAUelz645dTbKDozOwoeX/QMl/zH51z12TpXq5jbTT/D2Ico1Rtl6O9Td764ZbjPK/J2WMDBZWeHvo3kiakm56U9KZv8g8DYzl7bKBQ9sw43iDpWOfcac65u5xza5xzMefccufcb+Ut4fKzjGsuNrN5vmPGcfbYQKFkfmD5NUmnpvfXSvq8pHnyCrWaJR0vKXOJwwvN7MMZbYzl7LGBwJnZvpIW+poW5TNrRxpjOXtsoGJQ3AGUrnDGcWqY12f2Z7wDo1focemPX06xgaIys6Ml/VkD1x1eKumMHJeU61gbzf+DGMcoOekPibfNcbpJ3h+ql5rZN9J9/XhNzh4bKLRzJR2V3u+VtxzLcP/w6sdYzh4bKJQ3JN0k6TF5HwKf5Jz7V67OzrmUc+48Sbf4miOSvu47Zhxnjw0USuYHln0fAD8gab5z7mLn3MvpQq0Nzrm/OueOlfSFjOt+bmbNvmPGcvbYQDF8IuP4J8O4lrGcPTZQMXhyA6UrkXGc+aI8lEjGceaU9ACGr9Dj0h+/nGIDRWNm75N0pwZOP7tG3jcQt+S4rFzH2mj+H8Q4RimKSHqXvCngqyW1yFtX+J++PlWSLtSbvzXMa3L22EDBmNlOkn7ga/p/zrnMJRuGi7GcPTZQEM65PzvnTnXO7e+cm+6cuy/PS8/XwG/EvtfM+gqrGcfZYwNBWi7pXc65Dbk6OOd+LOkqX1ODpM/5jhnL2WMDgTKzWm2djUfy/sb1x2GEYCxnjw1UDIo7gNLVlXFck7VXbpn9eTEDRq/Q49Ifv5xiA0VhZudJulHeh8J91kh6q3PulUEuLdexNpr/BzGOUXKcc3Hn3D/TU8DHnXPr0h86vV3SpzO6f8rMjvUd85qcPTZQEGYWlvQ7bS2mfFTS98cgNGM5e2ygpDjnVkq629dUI+mQ9D7jOHtsoFB6s7R90zm3KY9rv55x/Xt8+4zl7LGBoL1TXvFVn9875zILNgbDWM4eG6gYFHcApWtjxnHTMK/3909J2jyqbABI0hZJSd/xaMal5K1v7Ocf94WM3ZhlevvRxAYCZWZhM7tM3rSU/vezyyW9xTm3ZIgQ5TrWRvPegHGMsuKcu0zSjzKav+Tb5zU5e2ygUL4o6aD0fkzecizJQfrni7GcPTZQih7OOJ6TvmUcZ48NFEpbxnFS0q35XOicWy3pEV/Trr6lWRjL2WMDQTsl4/h3w7yesZw9NlAxKO4AStdaSc53PHWY17f49jeM0R/egHHNOeckrfM1jWZcKiOW5M04EETssKRJYxgbCIyZNUm6Q9K5Gaeek3Soc+7lPMKU61hbk3E8nNwZxyhH35LU7Ts+zMzqJV6TB4kNjDkz20Pe8kh9vu6ce2EsYjOWc8YGStHajONmiXE8SGygUDKfa8udc5kFH4N5JuN4psRYHiQ2EBgzq5J0jK/pRefc4uHEYCznjA1UDIo7gBLlnItJWu1r2maYIfz9Xxt9RgDS/ONpNONynXMuc5o8f+zG9IfYI4nt5M1gkCt2Zv/hxM4WCwiEmc2QdL+kYzNO3SuvsGNVnqHKdawxjjGuOOfaJT3kawpL2sl3zGsyYxnBOEkDl0D7gZm5wTZJ38iI8VpGn9n+c759xjJQujK/Peuf7pxxzDhGcJZlHHcO8/rNGcf+D08Zy4xlFNehkhp9x38aYRzGMmMZFYziDqC0+asy55lZXmPWzKZp4BvzYVV3AhiUfzxNMrPMquCs0uPX/4FUtnGZ2bbrMPLaxbf/mnMu85f7sYrdKymfmRGAMZX+EOhBSXtknLpe0tudc5uHEa5cx9pYxc4WCyi49JJKw103N/NbwrW+fV6TeU1GZWAsM5YREDNrMLO5Znawme01zMunZRy3+vYZx4xjBMQ5t0ED3yNPH2aI+oxj/7hgLDOWUVxHZxz/ZYRxGMuMZVQwijuA0uZfz7Re0m55XndgxvF/xyYdAHrzOsP753ndfEkNvuNs43JEsc1sgqSdCxTbMvo+5pxL5HMtMFbMbFtJ/5E0O+PU9yR9MD3b1XCU61h7St4vqMOKneZ/b/CGc27lMK4FRszMdjKzu83sVUk9Gri0Qz4mZxz7p1blNZnXZFQGxjJjGQEws90ktUtaKmmRpEuHGSLzOf6Eb59xzDhGsPzP5+Z8P7hN2yHj+FXfPmOZsYziOsS336U3P7fzxVhmLKOCUdwBlLZ/Zhwfn+d1J2Qc/2sMcgHgyRxPIx2XmeNb8v7A5p/qLt/Yx2nga/qbYjvnXpX0yghiL1R6LeVcsYFCMrMGSX+XtL2vOSXpXOfcV9JriQ5XWY4151y3vGVp+hxtZtGhApvZTEl7DxYbKKANko6UNEdSRNI7870wvd7wQl9ThyR/YRKvyUAAnHMXOudsOJukb2aEmZPRZ5nvHGMZCMZLGriUygFmltda9mY2RdJbfU1rJT3vO2YcA8H6m2/fJJ2cz0VmVq2BHx6/7Jzb6DtmLANFYmZhDSxQeMQ5Fx9hOMYyUMEo7gBK24Ma+Afss9NvwnMys2ZJp/maHsj4wxmAUUh/2/1BX9MH0n/oyin94evZvqYVGvgBbV/smKQ/+pqOMbOdM/tl8Wnffpek23P0u9G3v4uZZU71l81n/ClKui6Pa4CxdJkGzlyVlPQR59zPRxqwzMeaP/YESR/OI/anNXCN9N/ncQ0wJtJ/LPZ/s3e3PMeEJH1M3vO8z9+cc/2z1/CazGsyKgNjmbGMYKS/wfp3X1O1pLPyvPx/NXBptCv9RdaMY8YxAneLvFnx+pxvZnV5XHe6Bs6Md6v/JGOZsYyi2lmSfxyPeDldxjJjGZWN4g6ghDnnUpIu9zXtIOniXP3Ta6L9VlKjr/mnBUkOGN9+5ttvknR1evzl8hMNXE7i0vT4zsY/NW5I0rVmVpujr8zsS5IO8jX9xjnXlqP7FRq4pMOvzGzqILHfL+n9vqa/OueW5uoPjDUzO1HeH5/8PuecG4tf0sp1rF2vgeub/8DM5g0S+zBJ5/uanpX071z9gQL5ZcbxZekpWXMys/0k/dDX5DKO+/CaDFQGxjIQjF9lHH/VzHbJ2jMt/Z7c/35ys7wC7EyMYyAgzrkNkn7ta5oj6dLBxpyZ7aiB76d7JWX70gRjGSiO3TOOXxhlPMYyUKmcc2xsbCW8SaqXtFzeH7T7tssk1WT0myiv2trf7/5i58/GVsqbvDes/jFzYZ7XhSQ9knHtLZImZvSrkfeLsr/fUknRIeLfknHNvZJmZfQJS/qavOUp+vptlDRtiNg/zoj9rKRds/T7mLxvgfT1i0maX+zHjG38bPJmmngq4/l66xjfR1mONUmfyoi9QtLBWfqdKGlTRt+3FfuxZRt/W3ocPZbxXHwi23M93fdj8pZg8ff/WY7YvCazsZXgJunCjOf37CH6M5bZ2ALa5C3n4H/OrpZ0TJZ+VZK+KCme0f/0HHEZx2xsAW6Spkh6PeO5e5ukbbL0PTI91v19v5MjLmOZja0Im6SvZjx/TxxlPMYyG1uFbuacE4DSZmaHyFsnzV/92CrpDklrJG0vb/3yBt/5DZL2dc4tDypPoNyY2WxJr/mavumcuzDPa+fJW2PQv55fh6S/yCvImiFvnUL/lHc9kg5zzj02ROypkh6SNNfXHJN0p6SX5U2h+Q5J2/jOpyS9xzn35yFi18h7s32Arzkpby3CxfL+P3KkvKkA/T7tnMv27SygIMzsGEn/GKt4zjnLbCvXsWZmJm/6yhMzTt0n7wP0KnnrKO+Tcf4i59wFg8UGCsXM5sib0nWWr9ml2x6X9xq5jaSjJM3MuPzPkk5yziVzxOY1GSgxZnahpG/4mua4IZYLZSwDwUiPh0WSdso49ZSkByS1S9pW0tslZX5T9lvOua8PEptxDATIzPaR9zz1j6m4vL8jL5H3werBkvbPuPReeYX/8RxxGctAwMzsV/KKFfosdM49PMqYjGWgAlHcAZSJ9Npit2ngkiu5rJF0rHPu6cJmBZS30RR3pK/fQ96Hz9Pz6N4m6b3OubvyjL2tpLsk5VxuwadX0lnOuWvzjD1B3re1Dhqqr7w33f/nnPt+PrGBsWJmP9XANTNHJVtxR/p+ynKsmVm1pJv05gKPXC6X90sub/5RNOmpoG+StHeelzhJP5I3NhJDxOY1GSghIynuSF/HWAYCYGbbSLpBXkFwPmKSvuGc+0EesRnHQIDMbL6kP0raMc9L7pD0fudc5xBxGctAgMzsdknv9jUtcM49NwZxGctAhRlsfSUAJST9grqLpOvkVU9m0yVvTfP5FHYAheece0bSrvI+NG3P0S0u749mu+f7xjgde6WkPSV9S95MPFm7SfqrvFl68npjnI69RdJhkj4rbwrPXB6QdARvjFEkc4fuMnrlOtacc73OuXdL+rC8b0Tk8rSkdzvnPkVhB4rNeeveLpR0ngYWV2bqlVfUvJ9z7ktDFXakY/OaDFQAxjIQDOfcKklHSDpb0ouDdO2SdLOkPfMp7EjHZhwDAUp/+LtA0lfkLdmZy/OSPuyce+dQhR3puIxlIFgNGce5PgMaFsYyUHmYuQMoQ2bWIO+X8O0kTZJXUfmipIecc7leoAEUkJlFJR0uaY68qey6JL0iaZFzbuMoY4clHSpv2typ8r41tSIde/UoY5u86TnnS2qRlJD0hrz/nwz2wRtQccp5rJnZ7vJmQ2iRZJLWSnrEOffCaGMDhWJmu0raT9I0SdXy/hj0mrwx1zWKuLwmAxWAsQwEx8zmSjpQ3mtyraR1klZJup/XZMYxyouZ7StpN3nf0g9LWi3pUefc86OIyVgGKgBjGagMFHcAAAAAAAAAAAAAAACUMJZlAQAAAAAAAAAAAAAAKGEUdwAAAAAAAAAAAAAAAJQwijsAAAAAAAAAAAAAAABKGMUdAAAAAAAAAAAAAAAAJYziDgAAAAAAAAAAAAAAgBJGcQcAAAAAAAAAAAAAAEAJo7gDAAAAAAAAAAAAAACghFHcAQAAAAAAAAAAAAAAUMIo7gAAAAAAAAAAAAAAAChhFHcAAAAAAAAAAAAAAACUMIo7AAAAAAAAAAAAAAAAShjFHQAAAAAAAAAAAAAAACWM4g4AAAAAAAAAAAAAAIASRnEHAAAAAAAAAAAAAABACaO4AwAAAAAAAAAAAAAAoIRR3AEAAAAAAAAAAAAAAFDCKO4AAAAAAAAAAAAAAAAoYRR3AAAAAAAAAAAAAAAAlDCKOwAAAAAAAAAAAAAAAEoYxR0AAAAAAAAAAAAAAAAljOIOAAAAAAAAAAAAAACAEkZxBwAAAAAAAAAAAAAAQAmLFDsBAAAAAACQHzMLS9pL0q6SpkuqldQtqVXSK5Ied851FS1BACgyM9tN0uOSaiRd4pw7v8D3N13SS5IaJf3BOffBQt4fAAAAgPHLnHPFzgEAAAAAAAzCzPaWdJ6k90hqGqRrQtJ/JP1G0o3OuWThs4OZLZO0ffrwXufcEVn6/FbS6X3HzjkLIrdSZGYXSvqGr2mOc25ZcbKRzGwbSXLOrSpWDpUuqOe/mVVLelheEdx6STs557YU4r4y7vd/JX0vffh+59yNhb5PAAAAAOMPy7IAAAAAAFCizKzezK6S9IS8D0YHK+yQvBk6j5Z0naRnzGy/AqcIlC0zqzKzL0h6QdKOxc4HY+JCeYUdkvSNIAo70i6RtDy9/wszmxHQ/QIAAAAYR1iWBQAAAACAEmRm9ZL+JemgjFOvyCv2eF1Sp6Q6STMl7S9pB1+/3STdZ2YnOef+XviMgfKRXrrjZnnjBBUg/ZhekD5cIunKoO7bORczs6/IK6ybJOkiSR8I6v4BAAAAjA8UdwAAAAAAUJou08DCjockfdY590iuC8zsEEk/kdQ3Y0etpJvMbB/n3NJCJQqUoQNEYUeluUxSVXr/q865RMD3f72kL0naQ9JpZvYr59x/As4BAAAAQAVjWRYAAAAAAEqMme0r6Qxf092SjhissEOSnHOLJB0s6R++5kZJPx7rHDE8zrkznHPWtxU7n2Jyzl3o/1k455YVOyeUNzM7UdJb04fPSrot6Bycc07SN31Nl5jZuB7rAAAAAMYWxR0AAAAAAJSec3z7TtLHnHO9+VzonItL+oikLb7md5rZdmOYHwCUhHQBxYW+pkvThRbF8EdJy9P7e0l6d5HyAAAAAFCBKO4AAAAAAKD0vNW3/4Jz7rXhXOycWyfp976mkKQjxyIxACgx75JXSCFJXZJuKFYizrmUpN/5mr5RrFwAAAAAVB6KOwAAAAAAKD3b+vZjI4zxj4zjuSOMAwCl7DO+/Vucc+1Fy8TzG3kzLknSnv+/vTuPtqYq7zz+/TWjTApqNIgyiUpQQBDaIQqSFqOARpqADKLSQREHcIhtVIyztqLGOYi2gBKhDUZFcQoKiKBgQBqCCqggoCiCiAwyPvmj6vrWrffee+q+3OHc1+9nrbOovWvvXfvUPafW4t3PeXaSJy3mZCRJkiStPAzukCRJkiRp/HS3FNgqyX1XYIzvAq8CngfsBnxiSKck2yR5TZKvJLk0yXVJ7kxya5Irk5ya5B+TbDxgrDcmqfZ1Wqd+wyT/kOR7Sa5px/5pkq8l2S/J6lOMtXmStyc5P8n1bZ8rkpyQ5CkD5nJ5Zy4v6dTvluSk9vp/SPK7JBck+WCSRw+5Z0MkOaZz/Sm3jEjyvE6bqzr16yU5OMlXk/ysfe/XtfN8z4rMM8kGSQ5P8u9JfpXk9iTXJjknyeuTbNhpe1NnXs9boRsw+drdz0Ul2WSKNjv32qza1q/RfkY+n+SyJDcnuSHJxUk+MtNCepJNOvf/k73T3+pc6/IR818lyZ5JPtFe97oktyW5KsmZSY5I8tCB92K6v/mBSX6Q5JZ23G8meWmS9/Xuy7OGXKcz7k86fX+eZNp/G8wcPgvmS5ItmJzp6KRZ9F0vyd91vv83tc+Aq5P8R5L3t8+HVWYzp6q6HDivU/Wi2fSXJEmSpOmsutgTkCRJkiRJy7kMeGR7vDrwz0n2q6o7hg5QVdcC7xnaPsk2wLuAXadpsgqwUfvaBXhdkn8GXjmbeSU5pJ3XWr1Tm7avXYHDkjyjqn6VJMDfA28FVuv1eUj72ifJp4GDhs4lyX2AY4Bn9k6tAWzdvl6S5Hjg0Kq6cdg7nFtJngYcDTyod2pNYAOaeb48yXHAIVX1hwFj/i/gSOA+vVP3a187AK9O8qqq+tg9ewdzJ8mONFtePGKK0/cGtgRelOQU4DlVdf08zOGpwD9NM4cHta8nAG9I8jHg1VV18yyv8VbgdVOMuzPwRODwzrn9gH8bOO7jgM06Vce124j02y3Is2COPBdIe3w78M0hnZI8G/gQMFXg3IbtazuarCCXJXlBVX1rFvP6OrB9e7xnkvUW6xkiSZIkaeVh5g5JkiRJksbPKb3yXsC5SfbJFFkt7ql2wfpMpl/MncpqwEuBT8/iOm8FPsrygR19OwInt4EdHwX+D8sHdvQdALxj4FTWpLnH/cCOqewPnJ3k/gPHnjNJ9gK+xPKBHcs1pVnk/uyAMd8FfJzlAzv61gWOSvL60TNdEI8HTmfqoIq+pwPfmOvvSpJX0HxuhsxhVeBQ4Iwkfz6La+zC5MCOrnOr6jvAuZ263ZOsO3D4A3rl46a4/oI8C+ZQ9zv8naq6aVSHJC8EPsPUgR1TeSjw9fbeDNXdFmt14K9n0VeSJEmSpmRwhyRJkiRJ4+eDwC29um2AE4BfJzm+3c7hIff0QkkeAJwIrNOp/izwNODPaRYm1wI2pwkgOK83xN5Jdh5wqe1Ztmh9NfAKYAuaQIsHA68Ebuu034Hm1+8vbMtnAs+gySyxVjveib1rvCyd7URm8FrgcZ25HEKTheBeNNkf3gzc2mn/F8C/zrSFxTzYAPgUzb/d3EQT4LIdzd9pfWAn4Iu9PrvPtE1HkoNpsqB0nQA8iSbzxb1pMkMc3zn/FmDtFX4Xc+fzNJ+VO2gCfh4PrEcThLIjTRaWru2AF3crquryqkpVBXh+r/2TJ85V1Sb9iyc5iCbjzMRnoGju3a40QQJr0GSeeQFN5p3uPL44MNBkFZrv/nQ+1/73mE7dmsCeowZut7XZu1N1dlVd0muzUM+COdE+/x7ZqTpnQJ+NaTKvTPgd8A/Ao2je9xo02U32AX7Qabcq8OEko4LMJpwLdLOi7DawnyRJkiRNy+AOSZIkSZLGTFVdRW9huuPeNFsxfBK4IslPkxyT5MDZZAjoeFM75oQ3VNXeVfXVqrqmqu6oqlur6qdVdRzNQno/Q8S+A64zsWD8fWC7qnpfVV1WVbdV1VVV9V6Wf8//o/3vh4Gdqurkqrqunc95VfVsmm06JqwGTBvc0LF++9+zgEdW1VFVdXVV/aGqflRV/9i+z191+jyJ5QMC5tO9aBbuL6e5X6+pqvOr6uaquqGqzqiqZwLv6/Wbco5t5pH3dqruAg6sqn2r6ttVdWP7OrOqDqAJBFjoLTZmsj7wW+Avq+rQqjq7qn5fVTdV1blV9XzgsF6fOfl7JdmCZguPCbcAu7f37htVdX1V3d4GjxxNE3DQDTx6DM22QqM8kCaQCJrP/MNpAmu2Bt4NnNSeO4HJgVD7DRj7r2kCoyYcO0WbhXoWzJXH9coXDejzfJrvFTTfgV2q6p1VdVH73bq9qn5WVf8PeCxwRqfv5gwM0qiqW4CfzDBXSZIkSZo1gzskSZIkSRpDVXUMcDBw+4imm9L8iv5Y4BdJzknyyiT3G9Fv4tf8f9up+iHwthHzuovml+5dW4+6VusOYN+q+vU0548Fru/VXQAcVlV3T9Eelp/v9gPnciXw9Kq6YaqTVXURza/3q1Pdf98L4W+r6tIZzr8OuLZT3mWadi9nckaGN1fVp6YbtKo+y/JZPhbbwVU1U3aGDwIXdsqPmqPtdF5DE2wz4aCq6m+d9EdVdRvNdj7f61S/OMkGA6/3lqp6SVVdUlW3VNWFVfXqqrqsHf964ORO+79K8mcjxty/c3wbvaw3i/AsmAs79spDgju27RyfV1X97CN/1P4dX9arnu77NZXufLZIsv60LSVJkiRpAIM7JEmSJEkaU1X1ceDRwLQLyVPYATgS+FmSN4zYRmADmi04vgRcDHx0hiCK7rx+AtzYqRq6aHnixAL1NOPeyfJbPXy0XUSers+lTN5CZehi/t9X1e9malBVpzN565PNkzx24Phz4Yyq+v5MDarqViZnF1g7STf7AklCEwA04dfAOwdc/wPAJSNbLYzLWbYtyZSqqmi28ukask3PtNoF+QM6VedWVX87oKnmchfwxk7VWsDzBlzyOuAdA9p1M2+sQhOINKUk69JsaTThC1MENS30s2AuPLxzfDdNQMpsbJZkxi2HquoCmswoOwEPAQ6fxfj9YJOHzWp2kiRJktRjcIckSZIkSWOsqi6uqt2AR9Bs7fCfA7uuQ7PNwnemy15QVb+uqpdV1R5VtVVVfXAWU/t953j1gX2+NaBNP6vHtwf0+W3neJ1pWy1zHSMCBTqO65V3HdhvLpw2sN0VvXJ/wXobJgc5nFhVozLCTARLfHLgHObbGe18Rhl1L2brL5n8+f7CLPqeCtzcKT95QJ/T2oCdUb7K5G2DZtqa5Vk0wSUTltuSZRGeBXNh087xjW2mjVG6ARf3Bb6cZKuZOlTVZ9ptkK4cEvDS0X+WbTplK0mSJEkayOAOSZIkSZKWgKr6cVUdUVWPBDYGDqL5pf3VI7ruAHw9yb1GtJtRkvWSPD7JYUm+ADywe3rgMDNtLzLhjl75yln2GTKXs6qqf53p9LcB2XZgv7kwNBPBzb3yqr3yDr3y2bOYw1mzaDuf5upezNbje+WfDe3Yfsa68x6S9WXQ36bNcnN8d+wk0wUPdDOPXAN8bcg1pjNHz4K50N2KZsYsPB0fB+7slHcCLkpyUZJ3J9n1nj4rO27slUdtnSNJkiRJM7qn/4MrSZIkSZIWWFX9nCajwicBkmwJPAXYA9iZ5f9/f1vgCOC1o8ZOshmwI7AlsBnNr803ZebtLYYu6F47sF3XTSvQZ5T+dgnTqqqrktzOsowEG8/DfKYzdMG6n02g/2Oeh/bKP53FHH48i7bzaa7uxWxt1Csfn+T4KVuOdr8kq7aBGdMZFazVdQzwik55P+Bt3QZJHgjs0qk6fqZtjnp95/NZMBe6WVn6gRRTqqrLkxwKfKx3aqv29SrgtiRnAl8BvlRVK/od6H9m72kWGUmSJEl/4gzukCRJkiRpiauqH9JkCPhAko2A1wMvYPJC60uTvK2q+pkNSBKaheFXAo8ecsn2NduF8yHbJky+0LCtOGbrt6ObTPI7YGJrm/XmeC4zGbI9xxD36ZUHLYS3bpijOdxTc3UvZmv9OR5vA5bfrqPr+qEDVdWFSc5n2Xd2X3rBHW3dKp3ycluydC3gs2AurNE5HhwEVlVHJ/kF8CFgk2nG/av2dWSS/w+8Hzhmltuy9Oe0xpStJEmSJGkgt2WRJEmSJGklUlVXVdUhwHN6p9ahyeoxSZL1aH6h/mmmX8y9iyZ45FPAwcCDgV+uyPRWoM98GLoly4Tu4vhMWReWilVGN/mjhczEMI5Wm+PxRm35cfssxzumc7xVkm165/fvHJ9fVRdON9ACPwvmQjfgZ1aBE1X1ZZqMNrvR3MOZAm62Bj4BnNHeo6HW7JVvmc0cJUmSJKnPzB2SJEmSJI2JJGsDBwEPaF8/qqr3rMhYVXV8kr2BZ3SqtwS+3Gv6GeCpnfLdwBnAacCFwI+Ay6pq0qJzktkECIyb2WbfWLdzPNusH+OgP+fZvP+FzFQyjvr37i/aTDnj4l+AI1kWhLI/cAFAkkcA23faHjNirKX2LLiJZVudrDXbzu32NKcAp7QZS7YFnkyTseOJTP7eAzyBJvDlGQzTD+SZjy2mJEmSJP0JMbhDkiRJkqTxsTrwgU75h8AKBXe0PsfkhchJC6BJngE8vVP1C2CPqjpvwNhLedF/46ENk2zK5OwNl839dObdz3vlhwJnDey7+RzPZanpZ3S4P833cixU1W+SnAI8s63aG3h1e7xfp+kdNIEgU1qiz4JraYLgYNm2SSuk3f7p/Pb13iSrA7sAL2XyfdkjyTZVdcGAYf9sivlKkiRJ0gpzWxZJkiRJksbHDUzOFPDwJA+Ypu0Qv+mVr+uV+1u3vGDIYm6SDZkcKLLUtu7YYRZt/3uvfPZcTmSBfLdXns3733EuJ7IEndMr9z8PM0qy1T38Dg9xTOd44yTbtsfP7tSfUlX950HXUnwWXNo5vm+SQdk7ktwvyROS9IMv/qiqbq+qr1bVbsCxvdNDPwMP6ZUvnbKVJEmSJA1kcIckSZIkSWOi/fX4tztV/43ml+Mraste+fu98sN75W8NHPdveuWltkXLo5JsNbDtgZ3jotnGYam5ALimU94rydBsrvvPw3zGQQ1sd3qv7X7TNexrs75cAFyT5NYkp89ifrPxZSYHcj0zyaOBLTp1/QCFvqX4LPhxr7zZTI2TPCnJ9TQZNM4E9hl4nRN75aHBOpt2jguDOyRJkiTdQwZ3SJIkSZI0XvqLsC9LssWULWfQLt4f0qm6nOWzEPR/ZX+/AeNuDLy9V736bOc3Bt45qkGSpwBP61R9o6qumL8pzY+qugv4eKfqgcDho/ol2YfZZflYSu7slaf8N7KqupLJAT3bJjlo4DWOZFmww5rAkC1OZq2q+luu/A3wrE75OpoAkJksxWfBub3ytiPaX8TkLWT+LsmQYJRNeuUrB/QB2K5zfHFV3TywnyRJkiRNyeAOSZIkSZLGy78xOcPGusA3k2w3TfvltAuWnwI271S/vc0M0nVxr/z6EeM+BjgVuHfv1L2Gzm2M7J7kXdOdTLI9kxfMC3jDvM9q/nwAuL5TfluSZ03XOMmTgI/N+6wWz0298n1naPs24O5O+SNt4Mu0krwJ2LNTdStNsMd86QaFbQs8v1P+TFXdPqL/UnwWnMHkrCozPiOr6nrgC52qrYF3JZl2K5kkDwJe26m6A/jqqIklWY/Jz9/TRvWRJEmSpFEM7pAkSZIkaYy0ARjPAX7fqd4I+G6SD88U5JFklSRPA/4DeHbn1KnAJ6bo8ule+eAkJ7XbF6ybZPUkmyTZLckJwFlMXrCcsPbAX8CPm79PckaS3ZNskGTNJFu3QR9nMTl7wZFV9b1Fmuc9VlXXAi/vVK0OnJTk2CRPaP/eayd5TJIP0Xxm1ptiqLunqFuKftkrH55k4ySrJpmUtaKqzgbe1KlaAzghyclJ9khy//a7slmSvZOcw/KBQK+qqqvn/m38cY7nARd2qjbqHI/akgWW4LOgqn5Ds+3NhJ0HdHsj0A10eQVwepK9kmzY/v3vleQRSQ6neZZ27+UHqqq7xdF0nsTkbCj/PqCPJEmSJM1o6P6qkiRJkiRpgVTVj9ogjS8B92mrVwMOBQ5NcjnNFg/XADcA69MsQD6x037CucBeVbXconxVnZzkJOB/dqr3ZHLGgancAPyAZYupATYFLhvRb1xcCqwNbEhzz544ov1xwGvme1LzraqOa7f4mcjKEODA9jVlF+DzTN7i47Z5m+DCugi4meZzAPB4mq2LAO5Isk4v28VbaL5b3QCZ3dvXKO+oqo/co9kOcyzLZwe5uKq+P1XjriX8LDiRZduxbJvk/m0g05Sq6sIkLwGOYlnwxZBnADTfhaHPgad0jn8HfGVgP0mSJEmalpk7JEmSJEkaQ1X1HeDRTP2L701oFl0Ppdky4EXAHkwO7Lgb+AiwU1XdMMOlDqAJXhjqSzSLqUf16neZxRiL7RfATjS/yp/Jb4FDq+q5UwXHLEVVdQRwCM2C80x+A+zD8p+NlSK4o6puoQnU6G9VBE0g1Za99lVVrwD2ZVkQyCi/BPatqteObDk3Pg3c2asbkrVjwlJ8FvwLy/6GAZ4+qkNVHQ3sxfLZW6ZzM/A6YJ+q6t/f6XTn8a9VtVJ8byRJkiQtLoM7JEmSJEkaU1V1eVU9hSYQ4Tjg+gHdfgscDWxTVS+uqltHXOMPVfVc4LE0i7QX0iz830WzNcwVwNeAtwPbVdUeVXUFzS/Ru2O/cFZvbpFV1WU07/lA4Os0C7130AQ1nAocBmxaVR9dtEnOk6o6CngYTXDDacBVNEEb1wHn0AQMPaKqPgus1es+bVaEpaZd5H8qcDLL/v4302R22WCaPifQ3Lt9gP8LXExz3+4EbgQuAT5DEyixedt+QVTVr2i+qxPuZvntVmbqv+SeBVX1cya/530H9vsc8FBgf+B44D9pnp0Tf8dLaT4XhwCbVdXbe5lcppVkx3bsCUcP6SdJkiRJo6TZyleSJEmSJI27JAG2AB4OPBhYF1idZmH1lzQLzResLFkm5lK7lc3GbfH0qtp58WazdCQ5DPinTtVmVfWzRZqOtJwku7IswONOYKM20GWx5vN+4GVt8cyqGrLliyRJkiSNtOpiT0CSJEmSJA1TzS80Lmlf0mBJ9gGuAX4KXD2LAKDHdI5/z/AtSaQFUVVfT3IBsA3Nv3UeDLx1MeaSZG2abEAT3r0Y85AkSZK0cnJbFkmSJEmSpJXfm2m2YPk58L0hHZJsBOzdqfp2mQJW4+mIzvEhSRbrB23PAe7THp9TVV9cpHlIkiRJWgkZ3CFJkiRJkrTy+37n+DFJnjlT4yQbAJ+n2fZnwifmYV7SPVZVJwNntcUHAfsv9BySrAK8vFP12oWegyRJkqSVm8EdkiRJkiRJK7+jeuXPJjk2yS5JHpxktSRrJdkqyWHA+cD2nfZfq6rPLdx0pVl7KXBXe3zEImTvOAB4WHv8uao6dYGvL0mSJGklF7NpSpIkSZKklV2Sy4GN2+LpVbXz4s1mcSR5J/C/V6DrOcBTq+qGuZ2RNLeSvA84vC0eXFUfX6Drrgb8ENgc+D2wZVVdvRDXliRJkvSnw8wdkiRJkiRJfwKq6jXAC4DfDOxyO/AeYGcDO7REvA74UXv81iTrLdB1D6MJ7AA43MAOSZIkSfPBzB2SJEmSJGmlZ+aOZZKsA+wJPA3YFtgQWJsmmOPXwMXAqcDxVXXNIk1TWiFJtga+B6wJvLeqXjnP13sAcAmwHnBiVT17Pq8nSZIk6U+XwR2SJEmSJEmSJEmSJEljzG1ZJEmSJEmSJEmSJEmSxpjBHZIkSZIkSZIkSZIkSWPM4A5JkiRJkiRJkiRJkqQxZnCHJEmSJEmSJEmSJEnSGDO4Q5IkSZIkSZIkSZIkaYwZ3CFJkiRJkiRJkiRJkjTGDO6QJEmSJEmSJEmSJEkaYwZ3SJIkSZIkSZIkSZIkjTGDOyRJkiRJkiRJkiRJksaYwR2SJEmSJEmSJEmSJEljzOAOSZIkSZIkSZIkSZKkMWZwhyRJkiRJkiRJkiRJ0hgzuEOSJEmSJEmSJEmSJGmMGdwhSZIkSZIkSZIkSZI0xgzukCRJkiRJkiRJkiRJGmMGd0iSJEmSJEmSJEmSJI0xgzskSZIkSZIkSZIkSZLGmMEdkiRJkiRJkiRJkiRJY8zgDkmSJEmSJEmSJEmSpDFmcIckSZIkSZIkSZIkSdIYM7hDkiRJkiRJkiRJkiRpjBncIUmSJEmSJEmSJEmSNMYM7pAkSZIkSZIkSZIkSRpjBndIkiRJkiRJkiRJkiSNMYM7JEmSJEmSJEmSJEmSxpjBHZIkSZIkSZIkSZIkSWPM4A5JkiRJkiRJkiRJkqQxZnCHJEmSJEmSJEmSJEnSGPsviG6nYv+fqCgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "tbd.data_summary(data, show_sample_duration=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Obtaining city id: 深圳市success\n", + "1号线\n", + "2号线\n", + "3号线\n", + "No such busline\n" + ] + } + ], + "source": [ + "import transbigdata as tbd\n", + "data, stop = tbd.getbusdata('深圳市', ['1号线','2号线','3号线'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "py38_native", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/src/transbigdata/__init__.py b/src/transbigdata/__init__.py index d3b8570..0215184 100644 --- a/src/transbigdata/__init__.py +++ b/src/transbigdata/__init__.py @@ -33,7 +33,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ -__version__ = '0.5.2' +__version__ = '0.5.3' __author__ = 'Qing Yu ' # module level doc-string diff --git a/src/transbigdata/crawler.py b/src/transbigdata/crawler.py index f4a48ba..4ecf710 100644 --- a/src/transbigdata/crawler.py +++ b/src/transbigdata/crawler.py @@ -48,6 +48,9 @@ wgs84togcj02 ) +headers={ + 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36', + } def getadmin(keyword, ak, jscode='', subdistricts=False, timeout=20): ''' @@ -96,7 +99,7 @@ def getadmin(keyword, ak, jscode='', subdistricts=False, timeout=20): 'sdkversion': '1.4.10' } # 发送请求 - response = requests.get(url,params = dict1,timeout=timeout) + response = requests.get(url,params = dict1,timeout=timeout,headers = headers) result = json.loads(response.text) if result['info'] == 'INVALID_USER_SCODE': raise ValueError('缺少jscode,请将高德开放平台Key中的安全密钥以jscode参数的形式传入该方法') # pragma: no cover @@ -181,7 +184,8 @@ def getbusdata(city, keywords, accurate=True, timeout=20): def getlineuid(keyword, c, acc=True): url = 'http://map.baidu.com/?qt=s&wd=' + \ urllib.parse.quote(keyword)+'&c='+c+'&from=webmap' - response = requests.get(url) + response = requests.get(url, timeout=timeout,headers = headers) + searchinfo = json.loads(response.text) try: res = pd.DataFrame(searchinfo['content']) @@ -197,13 +201,13 @@ def getlineuid(keyword, c, acc=True): def getcitycode(c): url = 'http://map.baidu.com/?qt=s&wd='+urllib.parse.quote(c) - response1 = requests.get(url, timeout=timeout) + response1 = requests.get(url, timeout=timeout,headers = headers) searchinfo = json.loads(response1.text) return str(searchinfo['content']['code']) def getlinegeo(uid, c): url = 'http://map.baidu.com/?qt=bsl&uid='+uid+'&c='+c+"&auth=1" - response1 = requests.get(url, timeout=timeout) + response1 = requests.get(url, timeout=timeout,headers = headers) searchinfo = json.loads(response1.text) linename = searchinfo['content'][0]['name'] stations = searchinfo['content'][0]['stations'] @@ -247,8 +251,9 @@ def coodconvert(coo): if type(keywords) != list: keywords = [str(keywords)] # pragma: no cover for keyword in keywords: - print(keyword) + print('Get bus data: '+str(keyword)) for uid in getlineuid(keyword, c, accurate): + if uid not in uids: try: linename, coo, stationnames, stationgeo = getlinegeo( @@ -334,7 +339,7 @@ def get_isochrone_amap(lon, lat, reachtime, ak, jscode='', mode=2, timeout=20): 'extensions': 'all', 'strategy': str(strategy) } - response = requests.get(url,params = dict1,timeout=timeout) + response = requests.get(url,params = dict1,timeout=timeout,headers = headers) result = json.loads(response.text) P_all = [] @@ -389,7 +394,7 @@ def get_isochrone_mapbox(lon, lat, reachtime, access_token='auto', url = 'https://api.mapbox.com/isochrone/v1/mapbox/'+mode+'/' +\ str(lon)+','+str(lat)+'?contours_minutes='+str(reachtime) +\ '&polygons=true&access_token='+access_token - response = requests.get(url,timeout = timeout) + response = requests.get(url,timeout = timeout,headers = headers) result = json.loads(response.text) isochrone = gpd.GeoDataFrame.from_features(result) isochrone['lon'] = lon diff --git a/src/transbigdata/quality.py b/src/transbigdata/quality.py index 6419e51..1b9f10a 100644 --- a/src/transbigdata/quality.py +++ b/src/transbigdata/quality.py @@ -116,7 +116,7 @@ def data_summary(data, col=['Vehicleid', 'Time'], show_sample_duration=False, fig = plt.figure(1,(8,3),dpi=300) ax = plt.subplot(111) plt.subplots_adjust(left=0.19,right=0.98,top=0.9,bottom=0.19) - sns.kdeplot(sd[sd['duration']= activitytime].copy() stay = stay[[uid, 'stime', 'LONCOL', 'LATCOL', 'etime', 'lon', 'lat', 'duration']] - + # Add the first and last two data points for each ID in the Stay dataset before conducting move detection, so that the movement patterns of individuals at the beginning and end of the study period can also be identified. first_data = data.drop_duplicates(subset=[uid],keep='first').copy() last_data = data.drop_duplicates(subset=[uid],keep='last').copy() @@ -730,6 +734,7 @@ def traj_stay_move(data, params, + def traj_to_linestring(traj_points, col=['Lng', 'Lat', 'ID'], timecol=None): ''' Input trajectory, generate GeoDataFrame @@ -785,3 +790,11 @@ def traj_to_linestring(traj_points, col=['Lng', 'Lat', 'ID'], timecol=None): traj['geometry'] = geometry traj = gpd.GeoDataFrame(traj) return traj + +''' old namespace ''' + +import warnings + +def points_to_traj(*args, **kwargs): + warnings.warn("The 'points_to_traj' function is deprecated. Use 'traj_to_linestring' instead.", DeprecationWarning) + return traj_to_linestring(*args, **kwargs) \ No newline at end of file