-
Notifications
You must be signed in to change notification settings - Fork 0
/
default_vambn_config.yml
60 lines (60 loc) · 3.25 KB
/
default_vambn_config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
snakemake:
use_slurm: false # Flag if slurm is available (e.g. on Loewenburg)
with_gan: false # Flag if GAN approach should be used in addition to the normal training
with_mtl: false # Flag if multitask learning should be used in addition to the normal training
output_dir: "reports" # Output directory for the reports
bn: # Bayesian network configuration; Does not need to be changed
refactor: true
cv_runs: 5
cv_restart: 5
fit: "mle-cg"
maxp: 5
loss: null
score: "bic-cg"
folds: 3
n_bootstrap: 500
seed: 42
excluded_datasets: null # Potential list of datasets which should be excluded from the pipeline
exclusive_dataset: null # Define this if you ONLY want to run the pipeline for a single dataset
cluster_modules:
R: null # Optional: A cluster module for R can be loaded (e.g. "R/4.0.3"). Not required if R is available on the system or in a conda environment
r_env: /usr/src/app/R.yml # Path to the R environment file
general:
seed: 42
eval_batch_size: 64
device: "cpu"
optuna_db: "postgresql://vambn:app@postgres:5432/optuna" # Database connection for Optuna; If not available set to null and sqlite databases will be used
logging:
level: 20
mlflow:
use: true # Defines if mlflow should be used
tracking_uri: "http://mlflow:5000" # Path to the mlflow tracking server
experiment_name: VAMBN2 # Name of the mlfow experiment
optimization:
folds: 3 # Number of folds for CV
n_traditional_trials: 3 # Number of trials for the traditional approach
n_modular_trials: 3 # Number of trials for the modular approach
s_dim_lower: 1 # Lower bound for the number of s dim
s_dim_upper: 5 # Upper bound for the number of s dim
s_dim_step: 1 # Step size for the number of s dim
fixed_s_dim: false # Flag if the number of s dim should be fixed for all modules (only for modular)
y_dim_lower: 1 # Lower bound for the number of y dim
y_dim_upper: 5 # Upper bound for the number of y dim
y_dim_step: 1 # Step size for the number of y dim
fixed_y_dim: false # Flag if the number of y dim should be fixed for all modules (only for modular)
latent_dim_lower: 1 # Lower bound for the number of latent dim/z
latent_dim_upper: 5 # Upper bound for the number of latent dim/z
latent_dim_step: 1 # Step size for the number of latent dim/z
batch_size_lower_n: 4 # Lower bound for the batch size (n**2)
batch_size_upper_n: 8 # Upper bound for the batch size (n**2)
max_epochs: 10 # Maximum number of epochs; currently early stopping is used
learning_rate_lower: 0.0001 # Lower bound for the learning rate
learning_rate_upper: 0.1 # Upper bound for the learning rate
fixed_learning_rate: true # Flag if the learning rate should be fixed for all modules (only for modular)
lstm_layers_lower: 1 # Lower bound for the number of LSTM layers
lstm_layers_upper: 4 # Upper bound for the number of LSTM layers
lstm_layers_step: 1 # Step size for the number of LSTM layers
use_relative_correlation_error_for_optimization: false # Flag if the relative correlation error should be used for optimization in addition to the loss (optuna)
use_auc_for_optimization: false # Flag if the AUC should be used for optimization (optuna)
training:
use_imputation_layer: true # Flag if the imputation layer should be used