From d3ad2cb6ace69cf6847664d41423fdd9742e5d4a Mon Sep 17 00:00:00 2001 From: Alejandro de la Vega Date: Wed, 20 Dec 2023 15:24:20 -0600 Subject: [PATCH] Update MKDA tutorial --- docs/tutorial/advanced/index.mdx | 12 +++ docs/tutorial/advanced/mkda_association.md | 92 +++++++++++++++++++++ docs/tutorial/automated.md | 2 +- docs/tutorial/index.mdx | 13 ++- docs/tutorial/manual.md | 2 +- docs/tutorial/mkda_association.md | 77 ----------------- static/tutorial/neurosynth_paper_fig2.jpg | Bin 0 -> 89141 bytes 7 files changed, 112 insertions(+), 86 deletions(-) create mode 100644 docs/tutorial/advanced/index.mdx create mode 100644 docs/tutorial/advanced/mkda_association.md delete mode 100644 docs/tutorial/mkda_association.md create mode 100644 static/tutorial/neurosynth_paper_fig2.jpg diff --git a/docs/tutorial/advanced/index.mdx b/docs/tutorial/advanced/index.mdx new file mode 100644 index 0000000..7e15190 --- /dev/null +++ b/docs/tutorial/advanced/index.mdx @@ -0,0 +1,12 @@ +--- +title: Advanced tutorials +sidebar_position: 3 +--- + +import DocCardList from '@theme/DocCardList'; + +# Advanced tutorials + +After you've completed the core Manual and Advanced tutorials, you can continue your learning journey with these advanced tutorials. + + diff --git a/docs/tutorial/advanced/mkda_association.md b/docs/tutorial/advanced/mkda_association.md new file mode 100644 index 0000000..48397ed --- /dev/null +++ b/docs/tutorial/advanced/mkda_association.md @@ -0,0 +1,92 @@ +--- +sidebar_label: 'MKDA Chi-Squared Association' +sidebar_position: 3 +--- + +# MKDA Chi-Squared and large-scale association tests +*How to perform large-scale association tests using MKDA Chi-Squared Meta-Analysis* + +import { Card, CardContent, Typography, Button } from '@mui/material'; +import { FaDownload } from 'react-icons/fa' + +## The Problem + +A key feature that sets aside the Neurosynth platform is large-scale “association" maps (which we previously called "reverse inference" maps). + +In a neuroimaging meta-analysis, researchers pool a set of studies that invoke a common psychological construct or task to determine where brain activity is consistently activated. For example, in our [manual meta-analysis](../manual) tutorial, we identified 13 studies where subjects underwent nicotine administration. By combining the results of individual studies, we can see which brain regions that consistently activate for this task. + +Although this is a useful approach, there is a significant inferential challenge-- namely, determining how *specific* the relationship between activity in a given region and the cognitive state invoked by the target task. This is difficult, in part because brain regions vary widely in how specifically they activate for different tasks. Some brain regions, such as the insula or lateral prefrontal cortex, play a very broad role in cognition, and hence consistently activate for many different tasks and cognitive constructs. + +Thus, perhaps a more useful question is if and where brain activity occurs *more consistently* for studies investigating a task or construct (in our case, nictoine administration) than studies that *do not* elicit that task or construct. The Neurosynth dataset (or any other large-scale neuroimaging datasets) is a useful reference, as it consists of tens of thousands of diverse neuroimaging studies automatically sample from the literature. + +## MKDA Chi-Squared + +In our example we want to know if and where studies of nicotine administration show more consistent brain activiation, than *all other studies* in the Neurosynth database (15,000+ studies). + +We can perform this test using the `Multilevel kernel density (MKDA) analysis- Chi-square` analysis, originally introduced in [Wager et al.,](https://doi.org/10.1093/scan/nsm015). For every voxel, can then test if a greater proportion of studies in our meta-analysis consistently activate a given voxel greater than what we observe in a large set of studies that we did not select for our meta-analysis. + +Conceptually, this tests if there's evidence of a *population level* association between the task or psychological construct in our meta-analysis and brain activation (for every voxel). + +:::info +**What happened to the "forward inference" and "reverse inference" analysis?** + +On Neurosynth.org, we renamed the pre-generated forward and reverse inference maps; they're now referred to as the "uniformity test" and "association test" maps, performed by the MKDA Chi-Squared algorithm. + +Although the method we used hasn't change,d the latter names more accurately capture what these maps actually mean. It was a mistake on our part to have used the forward and reverse inference labels; those labels should properly be reserved for probabilistic maps generated via a Bayesian estimation analysis, rather than for z-scores resulting from frequentist inferential tests. These maps are more difficult to interpret and use correctly, which is why we don't currently support this approach. + +See "Further Reading" below to read more about why this change was made +::: + +## Specifying MKDA Chi-Squared Meta-Analysis + +Specifying an MKDA Chi-Square meta-analysis in Neurosynth is easy. Simply, select a target set of studies as you would for any other meta-analysis, using either automated or manual selection methods. + +In Step 3 ("Create Meta-Analysis Specification") of your Project, select *MKDAChi2* as the *algorithm*. + + +![MKDA Chi Squared](/tutorial/mkda_chi_squared_algo.png). + +Next, select the annotation inclusion column you want to use, as before (by default, the "included" column will be used). + +Now, select a reference dataset from the dropdown list below. The Neurosynth dataset represents the latest release of the legacy *Neurosynth* dataset (version 7), released July, 2018. The *Neurostore* dataset represents the latest update of our continuously updating "live" dataset, spanning over 20,000 neuroimaging studies. + +![MKDA Chi Squared Reference](/tutorial/mkda_chi_squared_reference.png). + +Now simply complete the rest of the meta-analysis specification wizard to finish. + +## Executing your analysis + +The *MKDA Chi-Squared* algorithm is more computational expensive than a traditional *MKDA Density* analysis. As a result, it's unlikely to complete with the freely available resources available on Google Colab. + +You can run this workflow locally in one line using docker by copying the command your screen. See the *execution* documentation page for more information. + +:::tip +We recommend at least 32GB of RAM to perform a MKDA Chi-Squared analysis +::: + +## Interpreting results + +![Neurosynth Maps](/tutorial/neurosynth_paper_fig2.jpg). + +**Figure 1**. Comparison of Uniformity and Association maps from the original Neurosynth article, on three automatically generated meta-analyses. + +The *MKDA Chi-Squared* Workflow outputs two types of maps: **uniformity** and **association** test maps. + +- **Uniformity test map:** z-scores from a one-way ANOVA testing whether the proportion of studies that report activation at a given voxel differs from the rate that would be expected if activations were uniformly distributed throughout gray matter. + +The uniformity test map can be interpreted in roughly the same way as most standard whole-brain fMRI analysis: it displays the degree to which each voxel is consistently activated in studies that use a given term. For instance, for a meta-analysis of "emotion" high z-scores in the amygdala implies that studies that use the word emotion a lot tend to consistently report activation in the amygdala--at least, more consistently than one would expect if activation were uniformly distributed throughout gray matter. Note that, unlike other coordinate based meta-analysis algorithms (e.g., ALE or MKDA), z-scores aren't generated through permutation, but using a chi-square test + +- **Association test map**: z-scores from a two-way ANOVA testing for the presence of a non-zero association between term use and voxel activation. + +The association test maps tell you whether activation in a region occurs more consistently for studies in your meta-analysis m than for other studies in the reference dataset. In other words, a large positive z-score implies that studies in a meta-analysis are more likely to report XXX activation than studies whose abstracts don't include the word 'emotion'. + +Note that association maps *do not* tell you what the probability of a given psychological concept or task is. High Z-scores do not imply that a certain region or voxel is *selective* for a given concept or task. Instead, it just means there is evidence that there is at least a non-zero difference between reference studies, and studies in the meta-analysis. + +## Further Reading + +If you want to understand the nuances of what inferences you can and cannot make using these maps, we recommend reading Tal Yarkoni's blog posts on how these maps do not provide evidence that the dACC is select for pain: [Post 1](https://www.talyarkoni.org/blog/2015/12/05/no-the-dorsal-anterior-cingulate-is-not-selective-for-pain-comment-on-lieberman-and-eisenberger-2015/), [Post 2](https://www.talyarkoni.org/blog/2015/12/14/still-not-selective-comment-on-comment-on-comment-on-lieberman-eisenberger-2015/), as well as a commentary by [Tor Wager et al., 2016](https://www.pnas.org/doi/10.1073/pnas.1600282113) + + + + + diff --git a/docs/tutorial/automated.md b/docs/tutorial/automated.md index 5e15ffc..0520b77 100644 --- a/docs/tutorial/automated.md +++ b/docs/tutorial/automated.md @@ -1,6 +1,6 @@ --- sidebar_label: 'Automated Meta-Analysis' -sidebar_position: 3 +sidebar_position: 2 --- # Automated Meta-Analysis diff --git a/docs/tutorial/index.mdx b/docs/tutorial/index.mdx index 898d986..2331d06 100644 --- a/docs/tutorial/index.mdx +++ b/docs/tutorial/index.mdx @@ -7,12 +7,12 @@ import { Grid, Card, CardContent, Typography, Button } from '@mui/material'; import { Link } from 'react-router-dom'; import DocCardList from '@theme/DocCardList'; -### Overview +### Quickstart -Neurosynth Compose supports a range of different workflows, -from exploratory large-scale automated analyses to highly curated and rigorous manual analyses. +Neurosynth Compose supports a range of workflows, +from exploratory large-scale automated analyses to highly rigorous manual analyses. -The choice of workflow depends on your research question and resources available for study curation. +The choice of workflow depends on your research question and resources available for manual curation. We reccomend starting with the **manual meta-analysis** tutorial if you are new.
@@ -55,7 +55,6 @@ We reccomend starting with the **manual meta-analysis** tutorial if you are new.
-### All tutorials -Select a tutorial to get started. +### Advanced tutorials +After you've completed the core tutorials above, you can continue your learning journey with [advanced tutorials](./advanced). - diff --git a/docs/tutorial/manual.md b/docs/tutorial/manual.md index c3852a0..d593e0d 100644 --- a/docs/tutorial/manual.md +++ b/docs/tutorial/manual.md @@ -1,6 +1,6 @@ --- sidebar_label: 'Manual Meta-Analysis' -sidebar_position: 2 +sidebar_position: 1 --- # Manual Meta-Analysis diff --git a/docs/tutorial/mkda_association.md b/docs/tutorial/mkda_association.md deleted file mode 100644 index a70d3a5..0000000 --- a/docs/tutorial/mkda_association.md +++ /dev/null @@ -1,77 +0,0 @@ ---- -sidebar_label: 'MKDA Chi-Squared Association' -sidebar_position: 3 ---- - -# MKDA Chi-Squared and large-scale association tests -*How to perform large-scale association tests using MKDA Chi-Squared Meta-Analysis* - -import { Card, CardContent, Typography, Button } from '@mui/material'; -import { FaDownload } from 'react-icons/fa' - -## The Problem - -A key feature that set aside the original Neurosynth platform was large-scale “association" maps (which we previously called "reverse inference" maps). - -In a neuroimaging meta-analysis, researchers pool a set of studies that invoke a common psychological construct or task in order to determine if and where brain activity is consistently activated. For example, in our manual meta-analysis tutorial, we selected 13 studies where subject underwent brain imaging during nicotine administration. By combining the results of individual studies with a meta-analysis (e.g. with the ALE or MKDA Density algorithms), we can see which brain regions that consistently activate for this task. - -Although this is a useful approach, there is a significant inferential challenge-- namely, determining how specific the relationship between activity in a given region and the cognitive state invoked by the target task. This is difficult, in part because brain regions vary widely in how specifically they activate for different tasks. Some brain regions, such as the insula or lateral prefrontal cortex, play a very broad role in cognition, and hence consistently activate for many different tasks and cognitive constructs. - -Thus, perhaps a more useful question is not only how consistently a given set of studies of a given task elicit brain activity, but if this brain activity occurs *more consistently* for these studies compared to a large, diverse reference dataset of studies. - -Back to our example, we want to know if nicotine administration shows *more consistent activity* than all other studies that do not perform nicotine administration, and if so where? - -## MKDA Chi-Squared association test - -One way to answer this question is by comparing activity in a given set of studies to a large reference dataset. The Neurosynth dataset is a natural candidate, as this dataset encompasses a sample of tens of thousands of studies automatically retrieved from the neuroimaging literature. This should provide a reasonable (although imperfect) baseline to control for base rate differences across the brain. - -We can perform this test using the `Multilevel kernel density (MKDA) analysis- Chi-square` analysis, originally introduced in [Wager et al.,](https://doi.org/10.1093/scan/nsm015). For every voxel, can then test if studies in our meta-analysis consistent activate greater than what we would expect given the large-scale Neurosynth dataset. - -:::info -**What happened to the "forward inference" and "reverse inference" analysis** - -On Neurosynth.org, we renamed the pre-generated forward and reverse inference maps; they're now referred to as the "uniformity test" and "association test" maps, performed by the MKDA Chi-Squared algorithm. - -Although the method we used hasn't change,d the latter names more accurately capture what these maps actually mean. It was a mistake on our part to have used the forward and reverse inference labels; those labels should properly be reserved for probabilistic maps generated via a Bayesian estimation analysis, rather than for z-scores resulting from frequentist inferential tests. These maps are more difficult to interpret and use correctly, which is why we don't currently support this approach. -::: - -## Specifying MKDA Chi-Squared Meta-Analysis - -Specifying an MKDA Chi-Square meta-analysis in Neurosynth is easy. Simply, select a target set of studies as you would for any other meta-analysis, using either automated or manual selection methods. - -In Step 3 ("Create Meta-Analysis Specification") of your Project, select *MKDAChi2* as the *algorithm*. - - -![MKDA Chi Squared](/tutorial/mkda_chi_squared_algo.png). - -Next, select the annotation inclusion column you want to use, as before (by default, the "included" column will be used). - -Now, select a reference dataset from the dropdown list below. The Neurosynth dataset represents the latest release of the legacy *Neurosynth* dataset (version 7), released July, 2018. The *Neurostore* dataset represents the latest update of our continuously updating "live" dataset, spanning over 20,000 neuroimaging studies. - -![MKDA Chi Squared Reference](/tutorial/mkda_chi_squared_reference.png). - -Now simply complete the rest of the meta-analysis specification wizard to finish. - -## Executing your analysis - -The *MKDA Chi-Squared* algorithm is more computational expensive than a traditional *MKDA Density* analysis. As a result, it's unlikely to complete with the freely available resources available on Google Colab. - -You can run this workflow locally in one line using docker by copying the command your screen. See the *execution* documentation page for more information. - -:::tip -We recommend at least 32GB of RAM to perform a MKDA Chi-Squared analysis -::: - -## Intepreting results - -- Consistency Maps -- Association Maps -- Not getting carried away with results - -## Further Reading -Pair-wise tests, ALE SUbstraction.... - - - - - diff --git a/static/tutorial/neurosynth_paper_fig2.jpg b/static/tutorial/neurosynth_paper_fig2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..44fe571b1c3a27dc24d54c47144d09f177e2af70 GIT binary patch literal 89141 zcmbTdWmp``7A`!v28ZB7fP?_SA;AX;G7uQtU4jhmu7ThhAh^2)8C-*VaCdiiyX+(T zob&zq?yY{-Q>(hGYie~>SFd^3ThBAkD*zlRaj-Z54h{|w|8fAHS0&zyxtM(g0Ki}d z04e|gKmp*vApqcBw7-ND4(T7c!HZ7zFWvk_fB&yK@Gm+W96aFFOK$ff>@PaOOYZX` zX5SJ2aqo{8J?}+ce(oRTf9Dcl896F;W;Rx44%U}DS=l*w+1Pp6S*h5#c-h%`IoV!n z!)5%ZFE6(P&;U<>f42Hp?*MTB)c4g8% z|EdQE|Ic5Z3JMw;Dmo^? zD@+UwOcFeNYyt{WASDGUIXM+AGaVK62O4tn_n+uLu(EM-asugi1i0DxnK?Mw|7rvd z4Gj$w1C#jGD`NIHBlbe@cP*_x1RSm1Dt*dYN-O<_A z-P7CGKQ=xwIW;{qJGZ*FzOlKry|cS_dUk$sd3Akrd-s=Jf7$u(^iRY7KX&21*aeS> zh=7RlmtAo1&M$(1i-`1w4H-{Z9!1|4pPJnll|Upqv!Wf1hC|_m(7k0QWL@2)FM?KeBfB=5y#0ewB23hOBoucwMV^B3m$2-Vk2 zgDHgcBrY?M-0KYMSQ`=Fh#E(r(3z544yo2pRo`nuU|`4Bvkx^1LwL+%1U@$Qdu>Vz zX5$OJM)fh&og%CuwrAj`G*36f+GdG&VaEak!P9ubLd5rt53Nrhy?FtxSea11&!PMx zW;A#uItB@I?ko7wN9^>)MP@^_mXC!CLRw#%V#DA@JR*mS!MVNH-MZ{-xb>Q`XAiTu z-{#ZX$nT8YC(u?;8Z^`saSq2@x>8e5!yW|+;4kK2VMJ@IM+Rq~*sC+!l^IHgV$<4X zz*w2awpPq<8vP_?*{FNb&un<^PL;|W3~l)%w~skUx0U=SkRfHU;NXaWtu{*1=)mRV0Ie=K+4 z0w3y+xOXCeS9Lfp+Upe8?#j}huS%Z=gY8OYn${^Lu3zd;CiUGW4le^Zzn8? za2aJY$ugT=Pe!2U5V=BUWwF%96G?#Hd5jtsLqKid=hq+cs!t^?I^9W1 zp8>9CJ)2QvAcnL$gfds2Lh3*Hl5fJ6GNCS0?}>%Okc^ENK2ay}@)Ra=wAE286vv6xA)m#y}193IZ+ z>J5v^g7d*hxvj@P4P9hqYz%BG@)o(FECUmVzgNr+D5ipTtRGxU_{Vyz>1)n}+4+R( zD1D65@`}XPmWi8G23hoJYlj*LNKo>Q((@RaVLzrx1yW%Xnz>EZyox(M8`$H(aP_2R zNYbgoW3-MC(R=&2kwVIxQITBN(T1gC&#=AUDGYTN+7aX6(-;|Niol!-F`ENi+Tbd( zio+2G@b2`!wjK{)I;aF(dF&7NXKzG2_xhVt!l*YW*Q|9NtwBZ*h?^fYDb zx~5#=r=y95;i7!+#ib>aFS3l^8c$D~llJB%pbofr#rAwgY!s5Z5RZu^mZ^OALQZ!c zbl`iEL|H5{ev?|@$b6bE zjqk#9iZtxq9hQ{1`6Cr?ytS^%w#HOV(&Dc0J1M!wt9fL~yhc6eP)8P@0WMc%5QS6c zAdNr6I9=r5(JSyH|a)0EVoq>3r_(Haubtg#IHWx}n-W!PY`%heylWa-B zTt>5(RW~;r?kOefCASonrvf@-@@l<2s%PoXXZ`uG8{oKs-?^Gs!<{?hs{%SItX zgyTl*vv-j_AgRHp!P?3(J<@MQLEfGpWicwYfxSwV%!$sX2`Uv58+~Vn)>M(AI;F;{ z3D-`oi6baP2P3MZm!Y2Kom%r7`XQ2G;_~0+pyExjQmx(?y$MbOPZ2AgdAOtB4KK;h zZ>KX{64bSUA~A;~9@C8ERL=l>wsl}2WL1@HUc3F4;6ZwAV$|yJ;s%k)oqO?qOhmjT zpFGW7HElnQdD^%^&XLD3eAEl0qU%O?d?s5;#z==50A5W={SZ4u|7OKLA z>x&w5eJm_*LXHrw{U|Ew_^%KyN{CBKVT{~X)%hxCUljv*=CI`-S{X)bqB*ylD$^GF ztZ6f+O*ioS2;4u_p5Z<5GVx`M#T&`8le~c`6 zrTf`49N##*N6szGnKG-{USh&vvO3xQ#utPAXwI#0M`Fc};a6RQOVAR?W^XL+Q=vPj zYTBM4^^`+$W4^mDKdDhH(}b5KrFDw5Mu3H*ZX6br;bgiF~!qVn6NudzN=S z%#}G`j^I~CiF(_PT9?)fdJj3oZ0;bzx5r!bulKy%<44ES7Yr82% z_(nHnXT&u4^XeTO^P%Z!b~wzx=j~LFjc~{F1uBFnJe7Vu10qdcCiS`ZPIsZj_PxxH z*GNvc6~*g3-Qu?LYMApN(Ahuzh0Qrr8*9C&qef_=iioEuZu(fz_OA&RykSP+&Gn6h zLTk4pu5#qry##Adq@k|xeM}NPE8>WNA1BcChLgcNO z_DMN-ETK|qEp;rv2L6Q+2sJ zGcDtqwID+pE)9;eO%X(3_oQG)Syx`EA!=<@{}PqrQEAh$06ZzH@9M`A=#?FeI993h za~`ugAmR?il*Dq~-IcEv5rBLNTv~7q_9o4yA6829W^N6z=vmcF$C>GINctfc?<8m) zUEhrcTY8`5Z-_`&tC6kT@yZAgINBrF%hmX{=0KLsGP;>8tLvY%9>12%@5ku;9PQ+QeU zE?aME$3F0k<6h5e>wHFb5+9~`y@NWkuQfL>YHVw3X|=^3!`|3$_dp4f+KwQde9SiQ zQ)je1Cre#73}`%o9WLIsoQmhyFt=z(lFZL|qlYZO!jBAsEt#4^iIJ&aMF}>YdF3@o zGa>U8dfZrSwMLPDj|~8d*l^rU6`s^oxYe1|R*KF%owmO5y_;4?p{l6KFTog0o*u#*b8uGBEw} zZ%HrQj}d~EWy+g-$D`%9I!NAu*mtPvn*K?O45Ja4vD$DHZVn_+|6pF4-{DD5tJ<8lcj6yQ9$5pr-|!B1 zViP0B$&shdF@-NGXahI^loYaw-KVb8j_d7`-5hw_M~Ka8rjl|yrxfu`oN5M>395Uj zP;^}712-;amf~{mS^{GrH2j*^41BJ%iCBk4a6KdE`Yt2uD!S;S^ z319gd9JP;7GMx64q;*ktuj~^Im_aU;?@>ck@vOU7GJ|LVb`XH4Y$wrc?LWD2W1pQ6 z2`~^|8_e=3W5f@4(*Yj4M?^!Mrzy#%MdqcQCqs3?JwA+5)Z7K--X zAK1_N@bW3*R)1@cq|Km@JX((&%N~CQ{O$G@{UIhMRE7N4f}er$d9B{lq_ZZ2D~G7i zt)5yX_EF&}oo&Q=DtWCHH6Gne6fO1~MJ6v$4 z1xsPSwUOu?qu)qB@}FNmyDVeWsZE03tk$ST(-5msbL$q9sy$dw#z;G_tC5|S$Rb&&BlYr#5-Lqw1CDMeVNsFCH|m^iUm z+gaa*0;o;p(RJ_|hdGih<);(t+)O(P6(&$)*Mn;fcxcE}lB=->_{8pqfUQOOeR_|f zaN54`JvYp%nIt&`%$KbA@~QvZhfT{!e{`&UbO7BUDDjqMBJ1W7CHQff%xiF#ilF{}SJ;ZJ?fG%GRbgQy6M>O(wbU^k>pg?$>e|iqPo0KLW^r zQdGxO@%blEX^cycI@1l6VcD4LLzkU=7u3qN)fuEU6|$$$^p+;^Euvv`ZwX_Q$PaBY z&6huy!aWIv3mUqbOTXXNM)7W=RG|Ec=q^!3fO^u}-CoT~|9m=gigF{}xqM~8oQxPB zem|diU+L}RY#`9!DOnaHtq}+_%U>n0j>U~8Fl35U+!2HY3pN(@J(cl6t;KA#TLnRJ z#yu_-TDP{@GH-ZXN$N)mITP&X2R`mH3)!%>uc$JXs_s*c#4grss@pBy#V!sxyIY*< z=rYn^HyA{23KmDFOlYW72*%>~K+UY}iD~$Rf_pD%G4U^f;U=(v<^g2VQ2!lbr4x_3W^zCKP^b5^R;+BgR04C*;LUsj@=e1Bz;Zrw9Lnd?w9{c3%*n ze-|g8eX;V-@13BpZ=K^E4-1` z0Kb)CfC?j2yh(|RCP+CXH=O6vZsI7JZ{MQn{VJTEil;1?VfadJnX%P2k?2W#y#I`k zNTr?RSlZrfBdadG*X3Q$z*RC&>a@xD34ioa&han2s{!J2HN4Q|+-v^F= z$K7|LlFm||YANZ{oC(vPq~8RHcOn3M!#ftH)!kRS+56sBF)~(oGYzwX``RzcoI8=X z#m98q!}))= z86c`aO$TM!i;jBT^i>Z}_@k94)1f%#%-Zaj(VcdX_27e`ijPb;;Y4 z5xFB{l-tBPG7iI2fATM5%&Mr9VZZzBuJtCUM6nIRrxmun%ng!1R?a$EYIX3KcUh}F z=l+WO0~E0ydxO5id5pGP+KFfWiD;PG_`@jj;yWI|_VT{Ab0gJW-ZMbc@)@9w{p2?} z?9y_6edY9_%b)}D=5qd8qLl|E$C#7+?`1(nHOS%hgy&*}u()KY(3F{gnQ z+s+K z0TWVtc$8zNss1|GbUp|EEQ`R#$nZQLNjIGamU;iKwz_cFY;?(F+zj%bBv{EO?inZW zrF8Nbw-^;E-HJ>SjhIa7mwQ-*wt8c0cg14X47(Fyrl)J19g1rk%1<2eXJVQm#4QBb zJgnz|iz=;!wY#8&u4UPge3ARAR$S_DPIhs(2NM{{+^{t^S4X*0MJ#v+_pli;X=863 zA7oLQopD?=wd(`9d+#~TGpH1btG%lwnbI=|iQaervDE!i8PC@!uC{HNC+gScglIzD z4E+6xeIzqz^F#NXD14)%F#yM#8f8^YMG&sJ)+zcj`#g-@RkLSH@=1BdYzlX`hHb99 z%Woszss!Bk?kCYsRtVtzi!hX>KLaR7UPgZF888~IQuM!NA)KAp2Xj;kTV-euS1KfS9a7bt4O+sD=eaO<- z)@mD_pO2n19UXkJ#Hl94-n#KivpkE!$JC~)?dan!fU}%t7ZhC-5lSw}T9ge?f{A{a z`rzpDrA9HBfSk1*Gk<|nOg96*$eh=)rVx7NUeM7~$9hGRS?rivu9p^@NlsQJ-$P5ouj{_&MCP8=WuCl?}gJ{5=E&0bmNe)m(>!C14^3|xa zRWFRt+bP@0{qYE8da7FQ#y3-njdN@syu@S31H2v<&cMot4=FcuxAa6!nsV6+dj{aK zavAtg{pTBbiTDB_mbUI^J_G)c=D&czMlrOK+Kb9UeP6lZ>zhS;+?ag0`Ud`-3O-cZbC*O?>3o20d#EZGNDIDh&Z$CX;?+_CL z`au23W5Bp%_ouMF>xX>$#i1^EBqPI+5B_kn))h_QHPF)M@~^RGGfk9n5s`wS5O7w%fCWU1T# zD@}-_MtxYo=1_<{A-u_0F!|G!N?i5QFG{1IePQGdlyyfgB*5=H)|nQtm}})0LHDqj zZFi$5tqESw%$91>c#r+!7Z8T_02xC3V1F~!dFKgRiP4_V=UF+azoPTkc?V*({h=?V z;wf9isVJ*Bvz|L{pc%9R>xZoqMW6Nx_Z5R?5)#hAcF6{T`1ciIDcHih8grW)q_kg; z54tvqhH04FaRS=)>n;UffZE9s)7MK>Q^#wQ%uGYMe%LXbiiwfG_|ux*R7=sLH+3$D zzrwim>L-}E_@D#anGr5nYRA^gERNPf64MojIQrRhm%7T zJY~x}1*vNPe0b<1=;QO>6lqp_bVol6N>_BkP3IY{Jk?DXCP|I+2u(dc5ir9+{x?JKp! zR<51W&}aH~)!_G;rVdQALb-7DV5?0?N1|XC3cHIXn1B&^@}BikPkQh;oemRlP^ZTW zU+j3rE!^;R<#)33zqUo?LgkJ|ks!B2v1*FUFSTRLs@7K+z95OhUidyjNHN%|Kk2Y2 z`%djBJJm2zZrg_6{&H96qxMgwLXZiItMi_dL4gRG6v%e3>c4Q=P^AgWi&S3de0--o zGo(R6FqwT^=6aq<(J`iR{I#ku*P_p`m#m?Y?J}7REl^?);drXb4 zpRe}uCVzo?PU8+A$INsn#3mrTwK)dGKRh#Jiz0gwkJKa zlp;tPjX{y42_rOUi-M|lQPMq)olM0d0vUA)-F;-8ifYiG0n0*9%0p63P>CeEFNOCY z$Db{4TU${)cYqRZ?t;;vfe?ErJb|k2izTDQ+RXxB&mRU2fWC1&m^PDmBtWgzlk@FDMd< zf1ctHiLQP_!&ca~5RsTw-Mt$l6uq`=b}IzIig{#4wR5Oax}W z-M~Oo?%qcC#+|B3nV>#63XoeCl*$#CCy;|?R0hw|)ieflxSE%R zCM3A!$FnZGB;wC+?YDOY?YuA3bNM}+XE!z8ZcWL*n-4&p_Xyb&;^}3prJ-8)AO8sK za{5y?UD1NSQX3`je9->loVgRX(UrN-kgWN9+ROF%&vIHpP{>LD!Q}lO38X-P;T7mf zApNOv=oyer>cg#BjtzAq?Cg-P4!M_!s!)sb1LIh=QDSj))7OX`LtwS;jnY1ysOf_u z*%99bco3p>!qo)nLWbAc4eMKoDru~P9@lz^yO&CM4z-9=8X~Br6drh!70Y?ea_m0c zl}txh%gu&Hxu6f6VXd6^teIDe6?jI4i(KM@`yy~71TfrecNiYOIklc$7f2ea%vUZ= zPNdtZIoy4%J)}KJOtH|k=5pieG~u~2q3|Z%i69E286YkuIR_sNt4cS9s3SEeaYh$! zUzel#=OC|OzdmS)F~<5Kb6l3)evBittqu!w$e-dokqdBD-RqB& zZWlU-3LsxgPO^l~YH@$1rZ*H>$#dCVCN3IZ>>%qy>I@VZiQR%vxdTGFo24@9UpNE7 zFL2zAZ5R z0PxTwAE@&*Im*vO-#!i%|C;}n*~rA4g(Zn}dSporN%BYaPm~w}=XHM#(y#u-P`4b8 zC9_g}qgdME@lVI(g$o4Ce9?Vei>4}mBhnFUcC{pLn>s=CBl$41DHnbM*203ug?ZfI zIH!~b!WYL*`=748&t&*oD|TP$T*uqu?u44opJAbKdbV+bJ}X|zFwoupKjGHG{a@Ss z_R1$u&F%t4I=dX7na&zB1uZPF1TC=ad-B~1DShGVKb`(U?fQ%nH7G%T=goW7WBmEU z#!Kil?Pob(Yi+f*{M>+&YJ@rlp5>CzxATtoRFUUN!<@Iq4i|@+vf$D%mV^7gs#kH< zq{dY?g9MDMcUY~#d5@8hF;%muAzM1QpPN7Lu}{icCYuB>h4%0u9I^h}pI5yyFvC2- zWeL)}kk}VTtlb>HEZs@jn?Z?mYTU0MhhraOVzbLpDu#)7uyP0HzcAX3usj=hZAz4+|lpY2D2ZH zB({LZ^yS7@aRG(TfZw0Cj#{PZ65S78Q9p@NSAFAo%|PZnaX#QK-AkkCJ{fU00gPL8 zwxrB)1eVhOu{1W#j#yGRR05qI6K!?7N2jC-4LNA|jOD0$egv=Uv1hJEWxFGUcbu-3 zx@asd=y>LNioB~=W}re>Bzbw$ky_ytRbmUOoh}&g;uErN!Vd%D%EC@NX_>2Z zc!Uz40Y+i#4{ObQLSw3*M>8t0C}QpTe8UGjD?o`{dA#x(BK(EaMn^~bEZ;6B?nV4v zH?{c7Y2Tgcen>=PIkW0{8@$^Eab8{gc)Wh{qnaQEY`siTXara12&Zgc}SD zaQHc?dT`YLiAXi>r=)sfpABRX?7Z<3xExUftk?@O1+1Qv*o2)2(Un{&Ok8;_Ks2$|kNZOp&6a~d;IHwpk)W1;Z zIBS0xa=EqQE#=+EP}S8Qoz#i>;aT)&e!`Kq5(=|-o_jmW%KF1`&ES}-ik<(#8souu@8`h84Da9mOaY*{g;@U`SJ%1@+cZ10yy(q) zf8MhD@e&o~89-Qj#`P;KRpSB^0YH7 z2usac0vi`DnAYatK>DcD1k>Z7+S;KcGR+O;1MP-=oaF^-_S$`pxaUkpVTLd7H+uY> zgI&aZR+Q(gA)n*}lncg~{S0987FL+oMbjOqL;vJW1WF}j5a&$)*ln9lr!LFVzc@TC zGi8J)X6Z2>np!c8i~tm;h#bEt4Nb1IILxU_{Vhg3fUo2F?%@_)b6~!Gge%|E`(v(U zUKbmj0#Hy76yDAN!Yl?3j5T=(el1c=mU>7J-c@d|lltV1`!2IcYuTQ52x>O>mfHk) z2;AYmo5Gw92{5erB9RsXqdn_}q}$Bje=y8dwp7`6?j?Nv3%(h%p-E%gZp+iVkDMfs z)IPFG=XgsyS+PFoP?`tz5+li1Zb_J0E9*Gwq>|b8SVqQR)9b36a;*&P481}q=!O63 zON+HV)=+L@JD-`m`pU~Rc+}C=S^M+6!B5X=#Zmh`Ui(AsU*&kCdUcaSn+H_{3AXg4 zAF+;FqlVnBLJP_YbJ`uUF*~sGi|SS)hf`7)5B1*~>1Ks6h!e<*0SHscWdvg#@yPjL zzY8zkE~tbn|92#!0HM#y%98SJWj**^Dj@P8Na}|`UzZHj%3?Ln$nWVrt>X3Chr%N@ zld$V@jhH2R@2Ss`PiOwhWD>uu#7aydibRHVr&=nCiq?z2CL<~QRU^N+BF#0NfLz1M zuxU`1D~=WBZyLdAn+DSUb=PyymgW<}lx{Fn8EyDHt;9Q0R*04%CJ5mYxxVg+e9*bg za!`S2ftg6mh;rR$`DZzA4cbIHXWWyCGVhNGQa28%xqaz)9LsGmg}1*;pSA6T%2KqU zGuMHts-&T$(gC8OJ#IwWPr7r;xO!u=D`{@34;1U+axJWCzG0KmV+}Sp=mfOeNX4wF z>O-_k-|+<+)krLvY0lQzf%L(@D=&!!>$)XiN)52;n&7RZU7EJl86WI5=pPbMOjblU z(ya%X)gUgJccvw!mRSu3AeV~w1{}SM>XQSe6UB#)kby$^a_*kk%(h6}-3qB4YXgI3 z{|NJjW#K~ew;3Kn*&Z<|hyX{PQil^ny9F_Lvt(MiPlJ2#ER^{?4{&99J#AA?C6!>? z4-sr_=mbDHR63AikA;ew1(TFa9iv;7)Og;NGym0vhL&#A^(%pX0DO*Qo4d#Isz#E% zs5`$(yj?we<%AqXibo@Rn0EY>t>_JpD`}DVm5)w#Eg}Y z`5`D-;uvF`{NXk@c_)>DwJR08Vn`lTc z?X4)Vu(a85H7w5vs=j23a`HyW_6GRliOehR&&{XbC>?=o5>b_d$kcXd3fPJf92aF^ zxj1bG3&-w~_qhz-uQL<%&0HPvZrN_b!;F9lf`@-prn0l7k(v{0MOk8TL$o~Cmu)C+ zN4B-O31GP&xOkNwQ&iFu1Ej_a1)b|RHNyQCq$+YJSY0KyF;@sdgDRAnrDjfcL1|AU zWI#8XIRJG6y-OdH!1UeD(o?>47w@4s ztfVP|{xUB0YPL4Xe$th&o;Adhna|*yk7ek6Ap6QkH~jI)QpY*nj$+fymr+eVk0t*C zKp5wK67u32>smczAe5_-|D_Xht0(Als?B;;dOuHIwV{i)=_b;?-A4f{Jy5X13M0(n zxma;7mpLg7i`S4QiH-qpnMtv>Ypr1aLAaUf&&mo=Mn}=3pKNsIcwwkUArZ(6A^p$7 zP&D~J#RB+ALXEqpd6{bW;`$h3IpfqJ8@KPB^v52ZqbqEkO=Q6mAfJsF9_fYFn5_;S zbMx9O6*I%SmbzMBf^+gN=ljzLz_4kEE{+&iRyxi?&!$IXPKpo5fqi-pSDe(u?t^TX zII||@e3bjBmSE&MMi7hT#iPl9puMZDHa&ptfEbJC5*W3w-L|VrLeJQ>h*oU++dtwW zOvDe|MzKG_!tXAa`*wnqClFQc$7_W%$h{CHN{#(RmZF^2n3GVfRqur$J+wQBPQcJ-MiKcfh>)$>%#{>l z;J6pf97aI(ROUTF>Gf9HP2gvs6=K~JFUJw!w}{oG{qHd z%hWq{Tt(pi&YC|;z4aTGKl#O0HNU{RfJQs3_0Z98IKSO%JigVZ6OdMcTyxS1}2>e48eTI4?7cas%49>P}oOzx|dO{FVw9^=vUu>zb4;b@;3$QFE_Q=QEC!19-qn}H#Y^I&+D`R zVZcMil_i9WB!^j58W!6hNKsTRSTZOFyP^=GQXO} zuh4XNVCOAdjm+PU>`yjx&RFi7do<3Mt7I&3@L9zTQxGPmYC>%VQ`ZGP4PgFu zWaE~flsvwm0{(6erIfEf6D2pGvQi_*Zv?T71BdH1Et$J1Duc4vX^@b< zOUZC;w=_+#Y%#UiZ}9RVb9GOA~ar;IZn;|txd&!>7H!Y%|{;zy6)J+!d0q)zwR&ln!_jq-8#lq^0&I~))- ztMZt6GhsqA<9)ZsM%=GtR^)u0p0H;u3a5%2auvC%vS&Y4xl29D^unuDvO8x3SR2mY zqK`FKk69Uj4_CvwQhf*!5S>bPFA5Hs!-q54wa@FX=|Mg_t-53R9S~A7H7QNuYhgr| zX}a>MseKWt*LG- z!H&_{J9takEJ^bUfaT5u8&Kf`V_#Xj<-5Z<%fzsi+A=;x$5&s^t~18Pl3Bly6`HOpRKlGm^eJDyuNZtyUd^1y#G9&QemIokz~IxxBF4m`5n%waAdTE zfzVU+p$JuNG$YY^-DSyaUi0{|wAM`Ghi!#Q!#J9SE0D%U`S(;eD~h3A)c~GCtEhYT zP;E#2dv1m%JT!n#M<(UOe2~?}keAD9=un^qkCt1681KBS@BCpBVNU{!NY0^$8|9ET zMXV0DN|U6aFbDjX%uQx>IkhJP}iVG(_&mN+=e-( zW0h|B{|+(YQMaOX>B&N<_TJ%nfL39vl0%v7fwL-l$)U+S`k_&RUqw*p z7N$W3F7|RTAFzq7tGBCNf9w!#Fn$q(V0+L5>~~dc8ic34tw%k2CZ~_4A-kBsvIOov z-{1c>a!@I*vn8@z%PMiR9xPUGI({f-`*FrLDjx;OXg|8|vTVX31F5LN`@tRb=$!n5 zXmV-%PYLkV{0V3DvN#>4B{aIYZaqh37a3Wwe>2TjeB*?TJuAlVoDd`O79*Hg-#$&v zhnsG9s&ST9GCECMS&ZbXp$|%_?er6i*_`A770{%6x%x}fr~BgF%ZDOk)B!MK_{SQa z4oixA1{wYc%^W!sy7>rihUuD<#Rruq?fAr3m1&|v9}@8MD;Z_$YXoNV1vPv z`Ojgu2g}SLDn@z7R1E80Ifoxua)r+8RtTA z&HG@qH{N)zcc&T+y5CA29)(%bTs-67x=?Sl4XI#1dvD#}E^2sH;9M^oK%;PrA?xrK%^ry#bb!r^#3h z{h@y@!9YB+A`We$BMdEYN$c(lGfUh=L3{%zG1=gy&Y7>kInB8kwT>n;$8fO0e4#lT z`!zd9uxn@KJL82h4={ouw+Z8`EkRcnsO@HCMM7f_62!&lgNZvw&AQ?@EO9nuq+1vx zc~oXl5wEo0@Qzadg>{eI{!m0em8&i&oy-r1_gkGgQzZxgJI)$&)jh3H9W!-?n1+T-`iTTN{=fX3$r#&l51uhQ(k1sg zWmmPtj_y_=ac_-nb)q@-lI+y=Gwp0c`rDhAu&qI(F3wHXw6I#X=@PVXcqU7D&o*8l zfvazEQM!0Z{Q69cykez54JY6k(BeDn`LbW?EmBSr64MxUEjiE7K0Ae zo*ZKA1NN>IM{V=`1)9iy+$FvD@47&>G5SjqQdU=`Fw7^Tsl^`uYH0Jv{%$q$9wU2% zz>dN_S&72!F_?uThWm|2FL8=Zzc>jblh7O%XEr=k#h^q#rt;0gR<#v-EnYchT)Ez- z{G_4S_YS@E8Gw2n#1#CBqO_MBB~YehS=j=6s$o%Dqk0@4k0{1~{Z}`8&jU(*mm#=( z&&nS2;~)QPl`oB6+*B$Yo!ts@KVZ@)oB>FPn}kL$+acoWMh#vF?Q_jPwqum^AuYVX zf?}1A5*p3YY<9h0EY$y4A-YB1d2u-%xi^c`XEja;t7s8F)b)z)v7;d>I(TYmlOosF z)&y?7<^KWCgL+M+mtOE-PEfc;GjvKLL89p7_WHvUnHerSY-9RU-7a}}4cjvS4!ExU zO|Az~nn1FU6hNq?2jGKKu3nUSr7*;7c@C>%=s=R(!*13pm4xR2`$~%e-XSr)?EX=< z_|HC{qDhk;ZrGSr8L`plYb=S;nLj8rYtI0J_pMJo3Pb>*I_u->Ie}(xmQv_Xf8aar zb_wz*mo7u|lW(?5KuZngYv;p){vRtIwt~&Rj!1g5YbviZNM~d z?24TtPY=v~iMC;qf8`XL9naPDhB`m(QNI?CYGKgjs#uN>Vi0?X-np{g>~a&-4Ra{3 z3Av|iK`;G6F3`$g_PE)KmT1L9uAS0T8}q1iKkb^i$3oNm<1CQ^`6fp|Ti~(hg~6f; zskYBg=VvG;C!|4)n6wvB$12pz)pVZaaN(wPY2LePbMU&22wOss_q!L=$vcR)iK!=;~Dyi zqikwpHhei|>_0z}0f<5x!Tp^S@~-`5u`n zwX1AfDV}-|lq55*MXw}Zi@0KRstxq_kY+9m96R(M!L!1H3t!PAzv}JX-5;xCAy^nH z)Dbf@FY8a|V8A@GT8^_+*Dn1rr8wXDNBV2K1~Sl<%>SY9Zu*z2NzUJd@uF9Ta-=E= zT&p6RDESrWzUm{1ml5l#VNt()kke!`VrIDIBOW2U;wyGes;wtcIuKiX zn`eNz3TAJv}eFdkMym#z;-l=H}$zIT0u-8~$~UB$xau zWfg9vZ>uBEaza?K4VQ}S%!q8A%xs9|A|9NRISDd?Qxb_a``&ZwpFPedQxL^R#!V#0-jl&U+4KPAWSC7W2#o{NB~P zQJ%tOf!A8fW0^@4Pj}lv{@z%Ery$67$R=%2=?2y}B7|2F918q)A5_i^sU>sS+`Ue= zfj7Gk(8;!`a4B4~rQUPK_HIkO9-9iOn^&AEReW~p%|rUoq^^Gdjcq3{OTRKO`LdpJ z5MEb{4eyjD{W-uQEJZcurwZ-i9N)yad8Ou!YmLcJEF;MUO0(Nf6q)gBGAEvj*dKfKV2$;Q zWxRpBo4}oUzCKe;JfY$`ie@#+9^hEBIx#OY3RRfD4pS!5SVkJzyj?LHpuSx%KcB*O zx{Pt`0qFSQjy_Of(9)Qdu~tP64j4t{MYz)^)mLr%uG}!=1(uZh$ClV!D4vWyrvhg7 z0Pn9$WO3xON$IbeP%xla3el5o=ioRA&9maD9L1}Jl)9(HncOMnjW z!Q>`_3s~M!d3sD=BoYBiJpo+9rTkn_?OX{Qf zjJGJhB@uONj-u%20?gIt#r-ic6;8?!v$@d{_%$_4M`yN+YiN+zQ8heU1<{Y4J?F$5 zU$em}5-UwZ%;220gXiJ`0j3sm*0-Ymrp`BumZ6fHaoQ9R=_LrGt;K1}&5fgxW0$T0 zP&Q3XO>KRBi9&oAZK|AON1%Dl299csR7|r?&n&a=lwaPN<4jo5bM^r}%v==P7l22Um$>}G- zcV!x}LIP*(&c!a>7FwNyUrQ>3l|YA%JroW1a6@jLIs_G(-(n=cW z>L*xM6Z)yrnW-^+?ES#IH>!G)gxZc|bgV;3kZ{t>@dpeefh;og1(WiUmdwG^Li=}oc)?L!RM>;5(m&b zdHgg3TLAd#l9|jw1-$ z+w0#Uku=ti67HprFB}@MQ?fX6!85xXd<``Ggom(5%HI%aW7Ba;_~%BpM=3$GVLW^` zjMmGb_ryvS;2V(hv+OX5$UqiMzed6f>1I2VS>FRSo2)$9KTWosIAv zu6hC~WwLjJ|>sjHRj^fn1c#%4BSs|kTSVFRk)I;~*eXAEKiz$XnVP|#h zJz~!eX_geC@|RMr@iA;K6f-fygroRoT7ZqfO?)WhjVB6JqkZTyO%!>(_=U;Sz5G)X!5Ht{iyL%wGyGxK=d~vrVK!9Mu-Q9ybgy8P(y0|-mydhuv zoqO-Q=e)n)cMi3{B>S5&sBSGfNO*ETfH~#J)5Yu>i zr#jj(;oPE*BJ`>b4jh(Er3DZ7YGWm7M^|)$=vX`Rx4eWGcXplbD`0H)$Z4OQcv(o+ z^awZhI)SVP={g1PI>;$;TnoMC>;pxf%TPQ+?yxMj^j16R9$ia%C`T#3veg)vy>|{+ zHlSVU7}XKw&P!cRLO-e)!0~QB@0YLeX~9B!D=F|E5AHXx2%|Pkz*W1vekaVj)Jts( z*c;t0P_)sRgoDyN;4KpRoq-yrXO9(1Y(@y$^dP>Q+7}MKV~S-)Vk1j+{7GoxFvhnd@rzTL9;b>CiHcz&uVc&`H%fQyis4_r6JdAF9= zD}0y%ysey%XeWIYa%3JCav@XQia$DP7}r7VN zxn?Z9Zb<#`n`})3N2_`Yx|*h|E$kBht<|jG6_1*-Z3(X&cs5uL<+B*|QRncG_ZQwf zG%?I5;~n<9G49KjWDPA>$+DVwg!7{gw5~xT^3-0os}O(jKHFxUd`*$$<*;G}d|urN zG!`;3L~JsgXa}Zgnz>f)Y46E#ziaZC5&JHdVe_6&^f_xdeN`@fI$eleQPDLoPL54)E_@DA&^EFE_~~30_-6oThqSw5&k;q`0?-$$Oh>~ zQ_Lyk`TcZ7`me0$jz+QU>m)D6OS}>qh{gS-$+hoKzQUf`pd#O+qfo80_G?V6VE zc;~9^7bb}gA1Em?B(Jq*GIm_P>sK3)hxV6yTbFOKdlfe*T@afgXA7;wIJ!}Hu)~JN zY{>Rv8?2sb)Q&B*zwUVrWVr#?fW@N|A%EZD95)gK?GcvIPJCPfM%`BjT6vs_%6yz4Bf)tvZ z@+|UpAHe1oQXURqRSyL<6AvpBUQ-HTA#wpXJ~taX8?ciRxtonO)RE6kkm9d$K7f7- zW~Lzj%i?4uNTCG)=6tYq0F!etaWJtk0>C{kY!rYF2U7^2ikQSdH2}W^DgJ4ytE(%M zD?5{|gBdd`FE1}M3mY>V8zaEM=;#i0GIC>tI#T{igBaM+#KFSO$-)*&{-n{!*w)!e zkOD~mABNf3$;BR4B653dP? z6AT3ZOWx5I;^b=N02VO=${Vm0DDA(1ROB>&y+HdfK38+_Qx*Y)Dn?c|Mm83;e<4&c zvT*USuuw1q_A@^kv_^${4>w*7z z;J+UD|DOl`^AG`s0wWz);1S`^I{Xjm4<8JbR1_to<-`G?O8}%Y!`j5g@fiS{X#;g~ zP>~cR2QU}Okzk+~0Qx2#2ouC_Wa4NiqNF7EFXYGn{dzV11Y!vSO)x&``rqUKuOaBB zz{3K77)cIry*IIQa02L$0L|s!7Cc0mvIJK$DyO58C*D&?e>%HUJL?!1LDB1`6nh*ZK!-`b2v@(Kgo3fNg(| zryRZjL)BG*>s#QT7$gaj2FZhzK;$4}kTb{vWDOvVFalR75aI|@0pdmfU*uo^l~)3! zi~%VNkO?3m2C@a&fQR_|_4^&h|G5?u94_gt+|Y&p8zUvKkEnJ$(Q3 z=RWh#pNA{}q;wGk`U(Ayyln;u#B&LRfB#R|+jJ13Id_({=;uT+*3R#dj4lW)Z-iwz6ukdkSVdLWA{sl%w0A!vaq97uo;G(0U{`>-fQQ->V z$`RlIOwfM;qY?uif(IZ(pFHu;1MwMv4T}Vi48V&L0TKU8EF6H53c#lR`6osvCITi< zmG5!@*_TKe|0v!kJ&))xP%d7 zaIg3aGwv|8q;V_k?dzVw!`=F&en{Sf5e*!_xm-LvF&dd|bYwh8i8Mtws z@D@te%ht#pYAzR#|FPxLRN?lNB0RDXemeKgB5c5Q+Wbx;RT1a7Dj!GF2cvdld4;I? zXy10I*WGoLliNDY%u2Co{Y@JRsbY(8r(NLCA<=oU`s>l_#Ycq`kE%{veaorSpz!rNLj_ZLdSwf?*TKO zAsm%)#zui$04#sbTWJWx|S8@E~&h+VtqSOd3q#pM`B~pvhVbEb0YMVjDEW6nz!*4;mO^I>mMk@fqYV~L zFvvEedmIe5{8)VPl9s!;`;HV1DIY|K*7L$gb3$yW%r~IO9s~uCEgf$Vl6$o1#UPncCrfiQ`MG%#pwfbd|XlZ`tR= zs5Mm|Mry03vgJcx=WG}lE``<6u3&xz-+p-}PN8m|r~#Dyg6O^QJkW_wU5nB|RXtiZkr3moY83ls$@-RFLp zV>=*paVI_1J~K^j5V4w+R`Az}K89U*tQ%2MoB`fi#(njVUsr_d#Lr3ZMi$P!ai-k^ z9lu)y<(}8>k*bdU*gMJd2>19@##|3GYr=dl%!(?HuT=g^hiJfzn>LNWRkLlP3A)<- zitc-fU9IEn^w1$ip^4~YO@%7M>98d)@*)qt39HCNC&IZJuSP)VjqBtCB*%htqQ-aF z#}6iJxp6Gy4!O`#uy?#GDf8-BQLFW=dz={>^%Rl}))koEROD>%y<;ZXHpTW*UmLmg zWaCq#A0hEW9sGTG>N$Bd8}6@>6Cz2Q&b(iG$IV1-Q1E<~>uh0aILy1MqL}aLzR5;T z7US;#^{#yk(9Kfc!h$jD{a(I-RvX&(r;Zjj)8Cy}Z3`6$qpB~R9|VkHgu6ej7u+?sP|w(?q4Ayv@fU=S9x_Fl8UYfjS*6Gcl9n$WJl2#nL*AWjhL>EUT=-b(UDm#BBk>xrKcW6bue2GoO)kzfR0td)Nx(w4gK zFKDy0JTLz+wEkvs@Jky?RQdiE!GLvn*6i|#Bz|Y(po4RBw)Wd~r2twAw#KeFr3dcW zbXM-HEV0V0V&3pB`ke+#50>hA{qV{s)#PN~`lnHT-_z;ds9bKhRRo4mR#vt|hoXp6 zk4Rl&r8u;}xP~lTpL=SxU`7OFjq@tg^i5R_UrSt%x(&SDM1=8n^X6UUaa@%SFfkb5 zQyP5-lmfL7L@tY{G$@{AW)6Z=@JG>q!}cD?#wzGJmRh3o^Y@_VS+$BJPX++TC!c>@ zpU&`bH~;zZL;*sWlNvH9@loN)C?~_BuLQEvar7$K@dELHg>rzbG5MQ8wbHVDob6;X z5`uS=pF%|hMpzZ=`G%9^xSW+gwpWco+o(Sk2G*5 zP|mm41SHjJTZIQV1S-a7f*wiV@rr9G*|b0Z1Hw1cj7^i&B>V^?ZVeni9FTZ3ST?=E zW0o8J0vha+=XwimAoZ&Qhy8d;=NYE=w~%Om)p)Jja^tq~Z*?u}m5J7xg>i9BwMswN z61t4oE57n#ZV`E1Jxu)cK&7r;*MFcEt~C5cD=dkZvV-Lp6mYL2{*~`qs=G_2X3Ewk zKt)fJ?w$A$a>FmnN=;VNeoMF3sMwUJ#NG=Aj_?sEY|r-mxEE_u1?Q-&7O>^~iPi1@i!i36w2!CBXn$+Ku2-74)q`Vzd(;9B~ ziTlP!+(+`fgN%MMaA|x`7x(;G<%Z3^sLyad_0DK*) zhT~IKwSMP*)|w<~6{dPktdKd8IV^9!rfv#LtkB!D>=}}hAB~K4F%+Jdr@zoa#asNH zuY-Sy8$O+E&0b6~r=Zdh$G@jidp-7dWRHwA+YsfxLIfFFmdA>Q2Hre}>w__U_OvK@0tFE!hQN5$8@ZB*yncbAI;SH@cvGdo$5g!x_M zwFM7%+=ISojfa;&bQ!WV)KWX<4OhmEOs6aOr|Vp)ZC;|~6U?37~hPR-|w2SM2=mw*TjJ*YBrTqsq!5e+Gm+OX+R?a&%T1znV`&ZM+32SG< zt~(P2-04XFEGGKSN<;6thBZ%1OLOXQKu^*$cbBcp8&Hq}N7kjBhV(|Q#RPO1enGkTPaX;k6sNRW6W1ee z!vn)x^U9?Mb$v*)sH88ziYD-8xs-o96lA1)O!|ZYpXc3aQ`o!&Y-jgr*4?&bITJE} zK)#~qvpbp_TdiS8mK;vEY?o{SyBrg)m-$v;?fGB(yiRQ9CAq{WEhe1%_H&`f9l}Dc zc_UqSFd{FD$Lryr=lbdfhEtT6%N~kFXLqHk2)`Y&U}0b9OVk$TKmE=1#%EE|fap8| zRbwHh<;F(zm(JlWueu3m53tW9c%Rc$ zrl~nQ7%Chskp>hsT5H+PdOkW_daKQYU&dej;Nwt+X<&5m8HXG#qtzCz#2B!q6#yv$ zcZtZ=a$QEgy(?AOym?pVG1--EZ>+gZ_Jm9JAn_<-`_+_(hgQeNj;fB9HSv&aRhuAt zQ_o(1ACaGpO1X;N^VDRy8db$U%jZjbhw``2utU?l{m)35^Oxi`%OXhEczAa9+XSCd z0y=a!&4inXKl=>aQ{YKuX3vb3#G>FxQTNQkGUQPHiabL& z`Fs6)0;=wRemqg{g+T(r%32AZHB>6Y{n#6|L0_No$otsE#>{5)&|Uy}`y^&1@5x{Z zO95Z;>Q?rQOG92!rW}?0-oiNVdSn|B5d6ne5b!`z>45U>3jOt!;$*AgyKRzEgMrb^ zi(U&J61KJxDC1m@rmeb5tt)!}U4sMA5;|~*?~>hP>ovJJYSgQ$UbL9jT<`$U+>Un( z#e@Aci8EdHLuTCW;oZ%|Czmr@y0_jwW004Bt$#1nrJQ)X*Iat5i4$E#U`F&Zai{wt z<-!w>XSSz#GtM46{@c)IBfI+o-ikJ$-Z09Gg7ojUBz=lT6V<#Qo!>;*P_zinPl>ulBB@6yn&A zgj77_^boI8KGJ@CyVDd?ak`}F{UDsdm$dq12NG=1ZRjgo#CD7S5TR`8T>SXCOp9V7 zL$^hSxixO4OKzNj%LUWRs<6ze+9R86EC0{MGlD%#rq#rZevGB~t!CL|ic_jJf@q4$ z=j8@fUAx=YZ;dMQ9dOn4n-ZI=T(voQ=juuG+J0TeJqil~PzSw*unU|!^p{zlzn=^M z`j_YrX&SDpEs)26dvDF}B?r@oq*=~bND}Sjiv^wBJ@3+7Cn?X<;)E+sn(n+-ve>#H zl7S#`6GG2zzH(|Gq}+20*W20`l_EP{E?o5B?UowVZ1prA?E2;SMQcrdJ`G{+Dd+PM zS{+A<{cQGo$Ze^#8nUv%-Hs+mXrLlsziQjh?2B9G=9DkSTxO8oVSh_c-C7UhMCs z>97e8_gkRTv1Oh{m5GDdro5u!YY0nXwll1_Y#2@_pU=$y2zr?k^k~@9G;6PVylYHd zD#oT@`U-?V4h#Z+Y<8efm8N;mHzT!dlLk(&xOtTY>^&MfUFbwBIDTn6Z_9Kf4YXh3 zDsFRy$v&9T&a08gRU#v8DNx2aaVCwKdRq-k%=;1^UmG`DxdWJC3g@X9ccX(dPF2xo zisJG+9(>n|xuzE@+|kox;0ATbB7Z62P%u#FK!?FAJ)n>gP{GRUy0_&-&vaPa>%<_` z)G2@Iq4GUBx<>6pSftoP$GVI$qIf&cr5I~KwqjB2!-YL^5|{FnN-B%M46vAh=dOi6 z9Zl^{GS0W6Br!e$YbI>FNxj@if{VW5?xn!q-u|m!C_Tj;nZxgaM3Irq@Mt@#UV)K% zJxZ(&*)NyrIyU*1&wG69x1_$LQ;$w{EPY;qnZqupp*E}+%Ni2hxW68qj75%!;~`1j z?z;39Q0xg<>P}0kjZc2O@oi6LPwv*xg^p4-V>-)4>>rTk;M7ioqX4r9vzc^${`MFe zX%|M}NbLsXDf#z&JghHH#LHi|p^fux8=Q~dCQnaFj@FJ$W-IFz^Cod=l(sWR9jV?4 z>T+kCHo5$`;^eD1h_P!aiac1|{uaG+%yix~VH4-wf;Rni`cdL?VZy#JuSGX3g?DlT z*6Tw5An&>2nNl?P#_5t-hhH$;U=&F88N%tS4AfwWw{}$^JV-4q2aK!-UgHC zV)M!=r`w3X^FKhh50XH&Cd_Lm2Z4%2Fq&`U3Q1Bdd?={mZ* z*u{ZiCs{1wh*|UdIau{HtYT_nL0p%!GFnkR%sYbPu%f6pMc2f=Dc13@LL1ry4YL__ zaltvZRjb>tau%3TtdkA`5`HEyMdS7Ez`$kD+omAy;6v+8owa!DPOY^Va9Y8>U!QZb zstALI>Nea}W_LU7_ouq6E;6q>4OCaAe1QD{Wt@M6I*?d6&Rdw|>UE@3|;5P3>9lE}bh4Q}Vp1Z7Qt`BY#=wlIX6mlaciP+G#Y zdA={Pgq3g;-c*Ay_?K5j|AqcLX|-r5x!iiAJ&%n6sRh9*7(o~Zs+{t%oQxYH z3w`AaOhz&TpJ+k=!GjQ=!67_-%L$mjeFg`Q2zri*g$>M@lCyKNAmJ0dp`d*Go>hbj zn4m-kc;FD>AJKH^|A5kgFM~WR2!9pol#_K)J}~5u8D}u(xbM>4d*`?CV|=o#iQCTm z8*=S-G;J40A{wpmx#D%mbt{nvnQZ^Q%md<}O~`IE8RSkZZ(nohc91ti^v)B$C8*k$ zZ62Qs5**&(8lk3clQ0e}C#<^R72aRBzS5j*MX`+=k7r-|#j{Vtk-WdIZNL=URp`aO zP`+anyWoP5zLSXjz|DV5aO}ldNn6pok3zT0hCJZkOUX1-u2a0ik?maKQ9rnr(oL%T zY4k@>stM{F!@xhFi?$Q%N3zP!Qu2i$W;7S;9;SSwVW(DK$0iiW`F$Pb0+Pi5L~Q5P zz4-kxGd6ZsVbg2!4U${dkz2%l3zSz|}b#atSDZ{iGMv2Mi;UrzVW53a9pOYs%m7@Y8NF31)f#W_qD;FARIUQ8(_ zx%>guJJ}tE%&9I!!1>&F*w!;Ax_b|0?Wos~r(aI9Da%kMTVyqsI4@(I$hf(*+;*#E zXMXCOW+Hpn;fa;`uB}&IX#GgUp%#DE@TS%miPR-=-`b+8aakpVMv$@GJxqO%;T91` zW;X6>u9u4b%h26|k>IP`{C@uDYb07cehl>CZ|k>#C0EZa%JshrV|B=b6FQ^??%AhsbzUlo5-;1ko4I3`6CE|^R)-CD%wx^or?1i?b2bFQ#;gV{ehML7gX9)`b-arS zo7=yOmkd(vYeDsJKa>~EtInB@*HSe3BE9Gs;TBgQWE$}8C)ifo(@-d*d16o2lhlhI z0SR^Vi=yz8Q|A(tYUG`VzbiMv`A(028TufUH5+U))Xl^aI9gY$Uu=mi|=x zzOcI{FH+8o<1OK;Xvs)}(d{#RGiq3@RLVBt55jHNtVPE+ny{Ti2quPlMPtOzjqo{Z z59?cm;`JJh+u1D5MT5uTFJS@&d)=XHki8#0Z2IHas4bbMw^cV@B>QtCXG{8=-NJH6 zyK8N<_FsM8g?PPGH;*=GG8A<~Eim>s%RP;3W}hMuFf8Av7V7x2R>1Yq>57_~$_A@^ z(qSeN^f4dt{>a^Khhc;}R+oiUiZSqG#P_d>w+1CHJZ(xNhUp8pkH+Y5+9f)#`sB;F z$747~^rn!gAgX?9rqMdp=zQB2bd9ow>(*O|*6u}NlXt@qPs(1o_jwc)5H_{fdlwtt zGQ5DTW=Xs6O2=-}NxTs~)|2erXJv?UA(;@HaYw1zUsaq%RjVrI>H9OZHIx2j||}le}qK7gbZYa*F@L zgU`U>w|hnwt$|lB9EaRJeHZi_@%|Y7@Jq2}p)F@}so5sRD6?fJ)5nmXwcFrHJ7`4v zVY=9FNv`7Rsq_9g{Ik7T-H;$4p;DA=-y5mVplU-7QOZt>u1-*KRtuR3p8wP zRNc7Ghi!(iqQF6Db20@{Fy_V5w8uw~GNdXGkeeyFiG(TFiEPrnD;o~=yL`;()JI{H z$GzjLvqS<{MJ>gJu1+iu+I%U1QI)haQyJ<*g@s{sR^2Hcg+ko9R>27D!7_-un zDW&h#WzXGQa73kre5s8RG`tykEU1IYE6ofAdi$(?rb?oHybJO%X3kj(SYa_%tjf&c zV`G3E9DQu_{4o_Z07nzm_?|bR3+f#mzra8=lIG)ewvNyOxx8dQ)Gx+)*q^M}`2nfg z+UjeIr;4B%Flw8HeMO5u}1(7@iR>o^RN)2wtL zM6uwi^>H5dt|^u9j!?TdIN&CGJ~@MUb5xJN&0HA8OFP@X^orNk)T_rpZHVC58TWSX zG^cWrv`O9|Tqb3GuvMb>ca`&WatE&QCxfn9h-*itqilNnsAf}umZxOe@nfiCsHhUz|&>M0p$4ZUC z{BvLk@%z`q_2XfB$A*KNvq@zhDf@~!fAPbIO9j_UbQh-V3^zk)zST${@KL1#se5|Y zSTy*9#O@>m6jF+Z>kxDl9qxr_4fF?*1CBukB0~=`c#d!f|^3~mE+@( zW_keeF}x_~7NcbS4?$V}V`q zJ8^42kgIU5Nl7Lu45`#FK*%Q3R*beu@L%Ue#NDU}4s=MoX1#-L+JQOxkyV(*(w#~n zjpS=BlpJc}K!uOL4hR0g!`hjRWpxG@EBP*HH^2bni0ILEcqrNa5UWgJ!85KGFGva8A?ZkryT#Vd-7(XO zweGd?CFaE*nB&*q;5 z^!fyfa>Zscc$Svw7bzmG zd6^`?#USrOFr+;DbxYLGnoi64Z}Q;9+ybaeUW{A zZ~u`iMSnM7kWE6huePJZu7j(d1Q8lkEyip%EH-2A?N{IxnRH&mNBQ{RjML8dc?LFi z5ip>$So)l|OYJrHa}1BgprCNH>t!6RgafrAI?eg!ptL55cb~ITW&Bt9jvS`)bez(e z5tt~ahKo}sea%@g3~9SQ#)YT_d=4d)@vxH0aeMvAs?zIf!bG@EKqs)$LaLH00TcJY z1B7&k&_wHRF!PF08pT(#I3IVu*$D5u^5JlxFG6q89x^D#?8FfoT5H$AzY3N3UD!DY4vGsS zN`J2X`iqr(?V9*>V$xUJPvVvN$e!O}`nzkH9 z(c_v_dUlDx5g~Kvpo2z5iH5fTR-v+?Xe2y!FD1}8LR0CiDA%^G+#Ltf42XmSlRP+v zv^8yWHn={Y?M%&uO6NZhMe{4Udk;7L8eLYe4*auv2p6>L(y#LT5>8On+4dJWZ83D= zTL*Q~UBGwVz#2YM_=jtLvX3#8Y_xA^g*WfS=d7Crx$#_ z+U98`PS@{PI4CbIUv3%mML;_F^%bnaZ8aq!U7k9&rPPbNl}>tm<7Lg!V%fbtBfdL2 zKCk2efD$y@M6~kiRbo1gzVe7Xu%XuMWZs)ozTiiV*u+fd#P_lFJ1vDDI=5Z!oTZuI z5;|t7lKDTNH&?$q8V|jdJftaN3f%ESKD;UDX8Qwb^Ax=@WI!T3=pr*L!SCuJIQEpq zf381r+C49)*2fM}jiX>hymb5nYNk%5PjPRt!aJANHnO~p)UY*zGj6|S-D3A;0_H)U z1_nYKrKUf?(RdqsPdyPtV6_gP)hc6QJE@V@;}3}2Z?5sO&H9BScjdDyLome3Ep8w_ z5!_dm_Q4=9nELxZpKTs5*+dbf6}Fcy^uoL*3na2sDa^}PxLbn@HlNM) zdldVd)f#dQuOn14wwh>e<7*3xSmC7_kvOtqm9^%?MYS??)+AFt%^%1j*UiI`YtWkp z!h^I9(1Lc-r@noD<$2@c`|?G7LT*K59W|EQcAy@+npyb{W50>=M*70>jhRA&WzIam-?CV1&^)*FRBP+NNJMr_S|pb+kpFH zV6r6ezy!>hTXvjQhkv{i9pu_P17%aIzBgP@WV2d2vqtpvG10^LGB`2|w7}&tDPg1c z#8#~ognvNfkl%946X}J*7GdJuD?Y=BLn|toa0^w6XyzryPjd|D-dpyaFjGg!u;&H7 zPHrNp-A2&*w;U|u_IE-BwOA*#bXaxs+Ozg4HS4YO(bD|^dkVxB6&K10bA5qciI zLB}jguF{74De;MB=sJU^74vCBmekn|XjJ*P3WRlvAFo=n-RC~F>Bny^NujQqeijsd z&z>Oz9WS?;QJY0f0G>i3)2z&9V`l3N}a&wir&X}k0k@`YVI zBfPDbMvXY^*L`zt-eUbRol~lDrrN+(ezsHzz7N~3m6wK1TGdqSaPZ_LRTg=TenQY{ zmJQJJ0R7W>ZrTP3(?3(Xw#m;t}5yVthUG#50QC%`FkEi%q4Z4E- zcKEedts(nzjGaz>1F(`QD}OST5d_}Pb7}3)B7dh4v}&9jNZOf_v!}Nm$xz90iR(&n z*XP1(j35C_xRDS&h$u#Kz!_Rv1v}@W9aYMTh*1hy_f2K$2wiyxM|BYA667GrQ|)z& z31M+d-{#6dq>xwQ*`{~0aNy6qfCOJEs_5Wbyl-WM87XFwGlnLgcE72N%_s$_BTjtr zH_K#k96-OQc{$*`b|F;JU>ZsAtNNEvaMYk0#lChv_FPf^ z2s7y_OMFHCi_0zBIgEL^D-!!}0zk(VEdO3rbC=yYB0ZILZakd1AUoZ=6!(i&ju6KY zBw!kQ(~6gK!m!h@^>o4=ORb%tUw>z$+U4_YaecBQuy^w*{?bg(U3Va@ba`(Q}t z?L+<`&TE}piWwa~hviD=Et#07K@fVFR=>feiBxd~Zd)U5`FA>YZTeq)q2-;+L>)jE z@LF&djg=8SYZPr6Qcd=n1{Q--sK=Px_B8Hrv5AY@HkWqRaG{V~<$81{5SLhU&|LDW7I?yL@ z;G&di2A;N?Y6wM;gR^@}Xk{Vl$r6$^eG^v<;d925kX(}W$x8XDsag&wKSqoJ>ZWEA zpGH33b+YhyM0?2ES(P>hQ#_ofP?ET#iw>%c{5A zHX#>Aq?_$eE<{KI&75c%No@9urscHVEP8KISIcwzbjyYkoo&WNAXg#sDW&Q`GsF;rRtP|7s%96fP*0;rS;xRwZB+WoC@xrbOOK;;2DMMCZ*#y8b z2~*zt`?yWB`irc#oVkUHQwPLYrcpwuk?vy^tX)M50JN&q$yoob(MFX}nU(0;*+vR9>Rfq~bPjmL}N79xu~s^UTQ~7QOo<%3f2gv+4vDvRWnzxE5^H zwbl$hbbfHQdohW+I6X9cLrFn3wAzEy-SQ2klw2u(#=u;kh|@Nz(sHU-XY}NF5V2KP z7#N7SJ+kTOh3BVAwdn^1dQ>U9vdXn#iFu6~{2bRr5^x}YLCOFwnF^UfbhCKHRh5v5 z=oezqxCE|xL86uR-Pu&~=XypDNW~U9_mkvrIvDf|u zB3EQ@-to?}Oek_Qlg4S)w*MV zhSlLxljtg~&Es)i!SD8chm_&$v(thr2X9Qbrv}ngok0Wo>4G7WR>SC8N3@<;4@zpB ze?Sby!~muQ{m9u_^B)j%VUKT-_DD$HVR7@9{V^l^<^X*Y-)290J>MzRXuroy5nhsM z>hxv3a@$M!n(nOIzp+2(qMsl$_&J)|L_ z$EG)X9^bC~qokyme+%g~5>zj+R1KIUxm#0?FwSVD>6UN`)Tu()ue`VCUOM${E;)ee2865z?*)en&Gq z;R))%cBkjN{TJQF!c}wOnuV;|7;xh4X0u)y@0v@!8jS85z_ohkW+{}XJNyAFRF}(PpPD0WY4bp(JnLc?;A5m##yfJa8<(u!7Ml{=;?HJftHJ~d-Zi`|+7U3)!j410L!V^Q6aIk+L zGyc_5buTzlWkODSu(9)<9X@U2Ua3>>WX0@Gco4VPbatV{8l^M4!KE=g+^`!?~R z<(K6%f=`94QVTB`N+dF)gxX0bhY0w8eGWL95=v}P3+u-r&a~1~I{?wsXJs!L-9*!F zRM6w5*04bk&8s&GmHYbWv^$HTariOo_?~W>)H#;^?Io3h{nOXJjSXnt9+b&+&Z^-- z^{F?UT}_m<{1=PG&bGhf6}Lfp`8`mMPeQV|i&!-;nncUnm*mQ0W=|K?5&8GzlafDw zU+7g=XMe+m6c#cZJjA$%6>k|-+4lS>75z#9Y7jOW^tD{TMc%*JJmuHW%jOB=9G?_p z7fC(37wUtSCB=9m>YSyn_(WH+{150k6?E9*oI;*m9Xq%6D{h4V995BzxpG1@%E z_BfcSuE`f1vrCRiIw`A)IEBh`uk!37(FMmUR|4YtDjU*Nt@zcVU;?_?WrdatIMAX~ zN!cx;=Ec)Fi0l55KK9pQaNGl-Pp6mCYPUWghfXa@1}T3@=etjv6pCN_=IxLp%!~Je zK8V*hI%`ONwV#9BGZc{TQ%gH}EX*g&^A7Gy7$xxm8hW{L@d5E;sQlKd~MaXs` zq=*cuG~$0VpBs^o6|R*t1EvZh^gdbae{I8w3Sr|q_}VPK7@kTvZFTx-kEubp6RD~>L!+aWvy??M zVKvHX4qe}z4jnw3{X0_fhIcMdEgZ>%*9Iooz#@FlVA#%Lp7E98`l^;C1GHxJ2{MD~ z{dp0rs!f#E!ELCtuSbh=FrN4F1Pn^*$KW)w6&3|lG06CMR%`4uMzo3Dc@@svx5Vl7 zPwQZ2zX^~w!yvMQU;9vg(tqc+I$5|lI8S-3S9*uAxb)3&@o)rlolAQpMh~?PEt9hQ zQ*l~`)SM%!*TqV1F3(BhGe0L&&pKgOTQ`aao9jAFxe7W|^JP255pYv+nk65 zL}lzuw}}6~k$=5tf%9$iHR+VJMt|9Mne=x(h6Xnh#3@c;;rbhO^sui7jh*(v8!mda zYHW@c=P}Ext+bc;wB;jpvtSL)8S!UPoP34DOMF;#ktsPu>0n|}*5%Boo*FeI-a6W) z{KYwgJ5ceiq0X`vKiw-tezrNu6rfjqO?{NcX0A@fUJA*_mC8K(CodnB2ang4=voyB8j}$&)n}tI2|b`3LlYo?x7(j?GcMo{N9aqq`I(s#3&R~|So!Su;tdEvnAQ!+JhBBy&tG88Nse~FH)4yra z@Ipm%6JK>;gpYwui6lzA4@ZwvWAs&Yl8&4I=F64=z3R~fPLa5iA|@O2{T=o3ozR#k}dArJh% zjp?{iC9Y^Ri9~fOA~xTHSF)VI&5XwodRFad(+ahz3hwP}m>ZPaI7!2c!5@;be6q`5ZRz$ai-;bYGA|NI{+J9GL zod%txt8Ak~3LE8;|E|-w*F9s2hlhA&CuULJ0*>pS;gVp;l$ha}^JWNB5t1On)l+!j zr-3n}RDXqDGDsj$P>pr=wV^3YpBfhyEj?q5k5H9#8#_!) zQkaUCUKpthM({aLaQI#-HGFQsXMDvpCW1AHlkFsWq|^{)uI^+FSwd&j3Q5|=#}k(w z_GMzv>L?^6>NH(a6_-aI)0qA8UKR5^i#z~|_&lp%DP~DT?HXM-t5Yg=+C(+O5%1d< zq5!4AvTJy2ubw&8kGY4#SnXS}R}NORKf3pz>OK_n5#LryD>1W5oNO`FYMiE)DiOJG zDFk|B#Ra0#5KYAP1=VEJv(MCH7SH1^)p+QQZs_F51I=j9RaCfDDuh);$91|e-tJNj zt+8X`@YAUD>)`R9dqta>$F+O)7q|zRC#%Uy28e_v@Dnpl_Kd5C^fVTBK$&ny9a4+( zJVi?hT+;USbnXM5v+U@Ch4>6fk{g{WC;86sGITE&nNO0gxoxH}SQ!MP%ICjVL$qS0 zilf<;xpx-S&()lXvx^G5wh-uXEBOqgTu2n(t%(PAPJhpL&xzSm(omml9Y%eHp|FL= zZt^`=UsIVl4$>d_OG_kD7U3=UOE}8M8xmYqnGTo#hpDd$i)(43g(OJO;BLVOcMSvx z?lOaW26q@-0t6545ZoOG9W=o`xVyW%oy*Dj?|1LRJnXmWy{o%wty;Y*2;<{zBv501 zDR8MXbK|v@O;X+mZUil{$_X+zYO9w}JJ<5lb&o>13_&Tm9m9-+rrfvccCO>{6uyCS+we zK~=`kG}5R|>vHsOs3kiH^KzM#d(+OGLUSY~no5Sf585S{8RSdCM%Sp7nNbieDUl_4-{pkBSRgyWltv9caOd#;exI?9fn zk3$0wYqA!mVKT-si{kD0=hy;>hp5T&@T*xEF+5c0(_|Sq=m91cQJ0Qq=$WCV{z^A3 zs7ykd3xXdKM?cha5pwLi9I0NcY!fVRm7OgcuD&_MENE)3_v{19DyBaPDJ7||A6eVs^lIu>OgK#{`M9G`iFOeH^URsHrvTE))g^l?N-ln1 zre)88N-VtkIh_2%ZYb^&l6^#UHkQ%Yn0}wa^DDQ5)HO$l8Ocg5sR)*=dn$*ZEeq38%{-@^_T(*bFe!bW>nPg{hZWm0EjZZRZkm&vk<6(EeZ!*Z*yuosK zoZ9oGHssy0Q4J9Ll2?~`6HF`0UYxrf?LAi!PusA+B~;NMxq{`~@ELLfUHw93trWV~ z`1xC=U3s}6x1zICkv=*WpI#le)GPhtGil5!9@&E?C?1SQbrFoocoF=bnKhRlURgq$?x(CZwF9V^Q=jh-6?wN9$UwXQKr2kHBAbrMtJP(raS3Lm=~=T=B3B;b3b@v4|n zyc&@aY+_&+pnghlsr+FV_~Cse6z5xz3bH1*yJGj8C@x1ZW{-4K@1O2M&s_Y7uK;B= z@#nWF6=e@0dYB!T-oXWm@s3T!k*@##vNLhxjbQBlsz0yz?ySRyX_3!e zrPwtKZy&J>x-o^jQjON#rqwy*s6(Wo(#}gm$;gx7x(Von_h9qyB0t zeK@|1%?>QhTh^sjIh?4y)lHrknn@;c z)l))1qM&>;^=Y22q@ED$tBCp zX=yK|ckZ!{lFJ;Za>LMbeCIUU|6C+w@uFRm`?V;Ll)#6SW+ zm}UV-ga8j6lNhh7IiF8q_Unngi)BN|^5(7JlEq^x*bu-Nqm?7?&y0orHLq5F& zR*b8RHN;@~+4X;OQ%5`BvMT->!(V$*?MYC7%b0Ce15|XW=pRWG!R;SessV(kW9R{d zF@qe1he#d$1d zCjRXO_TA}w)4ECvb3+&h(Qj;NeqJYl_eIiP$EBMTwKX@HU6~D))=HoSNrrfYuUMxV zL(FQWn7l@V`O=%{zWs@Y&uuQvy+qtkVg9`1*c^o@eU5zC%zfSgeHP}JPf1xFWb#Es z4ue_2p||A=|m4H-WIxtXVU8q*t*tbGx8V_uJGp84KTi-5}5@z1x7 z)hh0Z$JH?atA=SQQlt;zS;YB8$xPwl_Uwy|q3u12y6B997kRO@yvMp;_2VL1w#1!# z6gah_-*~4rx^}eeKE&zB>XGAKkFx#&2WkiwinJqv)%gQbGWQcPN)mR}(AKKcnGxxG zWsZL_gX08JbG0-sdF~BT?DyuDfyU$0t+GA|w%gx%*6tRm<@KQ@zby6Oe*m%{WL z)n;W$Qbq=SF}a<5B;1(!H8`@=emS(&Bb&Pxn7HefE@u=NPhEUosqbh;O{d#)IcS#@ z$Y~oBXaIQ9$)Wd_>R~Hcu-Up2Doqr;O@2H>v;WgtMRMdL zTXa5?MabJ6sI7>Z`4xEfMnFqMW(c#7GtNNW6Qb6&Q@yg3Y@6gyTJ&X%=={csoZt$n74=PnICJMeaJ9}J=|w8+>B~~Xkx+IsK7}UD z>t!ooy35uLjF+pU7HT;;+iU~VPQFQcp8f~!0tC8R9f#I9^@|E~d3{Q7OfIU9d~?sd z(r-oi@_Q7DF^;qvCLlR!6`1w)Luqk;u|+ZvdPj-%W03^PdD$o&JWmT zhKx!^Iy8mjPM-$21dK=Ej;Vtnv70(A`p_ zDFRS1h;s{#a^*?Is+Bv=tt^id_@)6h2anAzp41S^H+PmM%~$t{&n zt8cJotm=wqX&Bk7sBT~n9!f3avnWZ_CZbjS*aITm!@*p&t_=(eQEap;o(m^{laNMm z2ng!B?HfdLuxnFV6Spgfe*`t-)3SYE;#8FVp=?o!Ej~7{rKB)%GML*UO{cko)Wx9& zNJs<39C2CVId7l8QVc~!%^h0|VLWTHTG~w8HokMVlpH;5ZYa4qfgMwJca_FtV#8BE zGN8(Ps!T3I$M%4>l+Jcz`8gSX#+ZfR8>cIfK&V_uAbxfCc7q+ zPof<)8EYU!lIb8d^|#t&{kleN(iXzFt0LYf%3|B8>XZzVs#C$wd{Qz_hMYm?vW}_X zs2Qi8oIuWt!dchB;C4Aa?IKA@4M5&7&X$c4Y&p@FiB=cJ{m96mkEGtH@~Kk{f>_OG zAdvW+?yFATThz+G1o&OV#d4I>XH1{)CR#P^@I$wEkvtwE5zm))lf17h!CO`Zi3yv< zrKtjyh9ADYv&t)u-AyP@Ot2tQ+82 z8dkVe$d_$6rQ+D^IL`Sz*$h#4=^54vX8&qW)y%|8{aUxhr^|6Mz7#+T?}Es=1(xE^ zk8%?}@f-Tm?g{9V`OKnq_9%Yu<2unmw?W_L(F7$~^w55RTHyjGdrGu|tczSta9t** zqrO#piw-uNEQ2~}i`<>uINFfFV#3_rfO08qL2YQ1Gk&8+V$fq5RLq=8{+-#e5^QnS z*yWHVmTz1`^I1vLs4T5dxGh{5APdElR@~0*2MH+I&2p%JGiyn}li~uuy|3uN76*qx zLG55U0V$xhJ67g^km)Aa)jFSx>6K6RX(;i@XMOU zxyEC-A{36FB!%AFFpm$^**RYmvl`N`L;bf7(o7th805xtJF*ja3~}!t8R?wUW9;&R zT@UoqW#%c|O3r*6VCf8b{b9m3WYC-c!$^Nimbz|j9HcMmfN>7vSKX43hi1~9$uKUkPAc}PX>pFuk)3NxP zP>hj-lPm_au*%`cfRV=!Rp#121yf>r6YtR4Pi5BuC)wN@*GDCb6Zf2`C64Az+or6= zMMd z)Vxkf?Q%p4EYs>hc|$pEFb_>a#VASyi4W7glT}`iHf=mP4KY;_wmKnsmSSwO8b3P% zk2UeJN>!0-YP?L09>W&PxZu)TXFMu&d}(lm%-y^zz(zb@6!`Av%u-oK%>J|)!892+ z`6@(5*4P?Efx2$QS$Yps-9^Q4-bon7Q@F+~W)Y&F5I?jAho}qEyBr_Pn|^vH|2o&H zP!?TTFAXmw^<%~`QhpFn6_bh1Ry-?~^|7#i+^TwEC>_@wR@qz_)&r~`HY;tgiHS>@ z1T7{oz`2G1CDDG^tDXM(z7o8QlR=h5ZKCV)AR{x}nd6+p*X}Q=H{hz-UWQZQkemnY z+S!#(U0HwYQ~*g$DGi_7jT|o((3QnY(wq`JQZX*P^^9T;oaJUNzJK?`7)6Z0LNg}# zTULCtOsSOl(|OFTw*2S)<42ZQ2;T|; z+sAJo@^R^z7BoIWp@*!jaUmJrm9s6Gv6wK!6T+^We!i@Aqg9W(ZM#WaO3Ga0KXH<4 z&t^-Inb@pNJdf_L`R9X553XaffX37gq<2s!SP&Ip1sYr|@rY57P&aorOgV|vrx|W7 zKTzu)up@(Zv%`#rjb;wtbp;7~91u-q_D2Txj7667nq{@Z^cvoJu^rAem;^pRvo|)x zQ8OQP4l`&g(j(|%v#_(M9AQ^FgSW4vCW_|exfpxRZxyM!gxqx}kdEb8+mcSS+VmBL z|AAA;iJY#(NR<2$HY$q{UVkm@SD+t;V&~uN%cSxqgghgp9ALG|{cG*#+D(M#>sHD! zU7jgj#I@U(TozmnnK)TQlo-gG|<*)OYWguZf@lAnv+dccDb+Ma)KB0K038|*YeS^>>TE4j6;Q{{P{>C@PlsJm^@ zc23ml|5n>zpp-a*h@Bs9vA|MV;=FP(8^O#P08i+<8$5*Ls-wwI09gjhLV$9@$pfHZgKM}fAeRZ6hk|@-!+#9zb@RiXF-^o@PfF z9J5t*@&z%FhmmzKw+j`{QMt$_ha-UQ+q5q+g7xEtC^fe_!SEqjLiyI>$2@2K55thJ`YNL`&THDo*N`AC(nPIaf za;LgPrlBoIE&jT~{d1lNeUtG9qAr_argii!eeH%OHJOhVp56NYzzyy&^Zr!4e&fLl zEzVTf;!v4}{Xz4?R~Ohn;z;*8B??H&__ahYNgbX?q;3B0E-!h9Aa?NSX!6Gxud(?- zs#JeQY7X!-AQilgPJP>KXNeLZoM))_u70sJX_t~(K7q+FzqD0ww?Iuj1;Us_FKH;g z;NMW1jJVapp=hT1Rfm*WeQzz^l|g603~Zr^fgme&DrD1B%}(ZbA}i=-_AUqFPwo4?C?dj$UgruBF4l?~XNoRa!L6CxVsEq0?`wAk=o~ z30VBR2itlN+;gR&+t>liiD@J*hq_<5wI4r<9w~L)d0>cTC`L;V)rX7F89i#=Yxw=f z#O1o9+5q|Cy+~55qxo{p`@%5Ss%DHog%j3ELkaW!zH_{e4nh6XcPCz-6||Gm+HYXQ z>aMqzcKE>HEyQBWpHVqh(?WAL_Jk8YbG(pXwnomEXj2~$&#T{eyiTg+GsMo!TkpgtNXON$TYU)SgA+n zq<@w>PYZ+e%%Q&go2$#I@kHS_ zjr~$y*Gdnr2U6oL^&@+9Hq|fBmWObX2hmr~P~r79HTcdpWv|G zVN>C7h<)T#HFiY!fJ;d&uIAz&3ms?YGI7eO`Ax$up&qw>W*U%t{uvQ3ke0`JL#4L! zFO>)nhba2y0bQ}<{9-kMr}4#`ycV-p*x>Ms{trtG(o&r4cCXo&!X7yti?jHEVqJ&1 zUK>IFDR+yyf@o*;zH?oGPLo4E#Q-i35CU=wL3860GCojt`K znIEjm80V!GJA&99ZNVk&_uyWU+IV51R4ZwN7A4-1s)79(}yOWL}q>SLS#2d?z@ z=DT-Bj%Zp9;yP#G+WSl_}s z@Tj($-GW#^LelTjsc7$a79JbDUIGaY#-7yN&Ix03Jq!Z=!Lr08Q`LU|>Ka){wo-q;*I2SRBqWoSjigh%_-Nx5)aOw<<)BV{U zymQ9094G=HsvZ!k95R`QMOgFtAVFKQ0)8{I^Z)7*N=6&}wwH~12x~ga-at4@>}AFN zvR(%7ctkmsqM$U;nvx{&5y7P`l-i);RWN^Mbe-bMu`v?WX_IfcDYF%B&LBWD7XW`1 z>82*U=jgu6$uULA3y0|x{#yZg=)L#sYH__A;FRL13Fe4dGOZeN- zr&NO8vf9G8f3qw+I8iJ2@BPps(45AvK&Hv|EM?}yh6q^^D*^exz5 z5q5wgHsU*iWiJ|t1$g5=@2AM;REsS8BnEY_vA96%8;#+wY4AEO<<=N>5S32SPQyCLBpwwnZTTa}Z-p_A*~E;LB>sM8lvK}2BnNj?3ThP{%ifB#aFba8`vwm@%S&`I}IKB9uwy2Cv<9J4@$i3^v zBdxC^^*R02b1daGUJ7r!fe^MH4B&3URsGpa9QCF4on8eq) za^9R~z#}UzruZb6lODLz=q<3HR(W~xH%f8%$H*xGwH`;V4!j6|@mrmUEZKT) z9h@Y^-X*K|>BB}v(CnTbm|`SuirFiW;02R(2)Tw~E^o!;B%(>5GzECb3tTg0NKI2}_W<87A6`t(AgWPsig+Cv6)|KIi;u$|B zNLE>WfeS#a5Bm+9{_G(72P|KasZ1wo*crRz6grbXYLl(uhW~EA@*s}reSd!95f7ku zJ$<~yn0lmAtRXS+fG9`6L(^a(9K3WuT;p4T*+Z)+@)WMvYefexV=PY>I<|vyFKKFj^vRnT>m_&$Jf^bkt@unN=e(k`2Zq0&yyo|9$;7iunRW51 z=UlmW#(a=s*kCupB`AZcft-35!!a*bv2~wD5CtsZB%P30*T&nG?DJe-aflvCZmOeH zC$yjRqKpYfJ%W`_eO;=@ReTb$*Jm81>}6=MOByH)3-z-KCIkdwL4m^S>_ci;ml2-^I~ ze>_ZQrBjNpc>kFDCGJ!UesWQlhp1wwa$V;_5=Vb35+m|`0)&6^>8Om2oX5oC`%H7| zb`|o8cLZ*qI*FatyRu)a{sjxaGsU`z7nIR-u^XWs3~GM}7?q`of5S0Sxv+N1bA8+|1jj}7qY0e#67_9t!9xofi)R~4zqPa6&fBTg1&Z@ znyBdQG$!CdlM^Q@BnW~Hq_YU00p}6dQ;|$Htjsl)g;Nf53PM|U-sRjn;kY|eIhxQK zgMVY|gB!7FNJM9~X7l3D45{i%sbJwRqFuJ5{F9PvPpK@n_TqZL^r%1Ijw^n?uUspx zPjh9La>sBiFGct&p{=Xa$1%Z$Bk5bKkdin**v8|N-Da^KEom03;N)qkoh#)2V7hve zhx<#eRcu`>Ir;sPr;w#7=e-m@%N|MuW=LlXcwBZIokhZ?+B2-=dz=VI2~&eQGG zIhezlV8T*xI#9WOE89}M-I5a~8IKMgFzcXoX-{t%`@8Qm8t~o=4PMCJs($4vEuNM* z&5mIO?o~0*w~u@cVEzXVjDP+0cQZyRvd)MI3$7n4Pg5Du;&Um3;$V_7Y)f>l9Qv`p z4UNsPh4L|Xx<7WZQRjkFG9n^pB>kd_Ehve+X3(&+wOs6F7E2S%5Cbb>Vei8x5NNlj*Hz@bmw-@x3 z130jYrQ;*un}ew_ziVyjZcWXzbucWo4|a9N0D3}f&e?Jy_i2lTWFY;VboQ(M8j*v} z&KP)d!WFzL^ooZWVr|pkAAgIiT89i1jkeqK@Y|h=9kM@}_SnDePV{9j9&LZYjaOuz zYZUz*#`$=v{n>{9%GLa;OfobweZ0N>l>B|gf}nYdcaj+vfmnexU0ZfdW zzae^R!5h!MRdlFK6Jp7go>T?`n@LRT4EEM>vpVY*!o+8D!n)FB_&xQd;xv}JmOPn$ zt=SaLCO!xjW8k?UuEdrF*txC1wlrtzb^T;Z2v2Z#-gEXU&XYJE?G+a)Sw}?Y2F@7Y z^?6Vt_L?`=Mq1g1hOX@1m0cFN@au6~T)^D>(>N)uil+|oyb>{S7a?ih<5-Sky zWMj)dpb)vuSQ?C9p}Zmd{fVauR0b-Hty5KNPNuDk6kFATBq=N!$3|mR{%`B!xqnIiwlZn{#G$TSvw7% zTw!4>wHT=nemxPjuY6=@_KygjN@-h@XC1b1xlH)BS)~=c?NRLy&gl3u5rJJ0Gv8fq z)3B&kE;MH;k7a=Mpp&)SMenqGfq0u#YZ{U7$*Ej)(JT)qDYXlVjp&l>%&W7PdVV_&$jobz|=FX*H5EM)fO1yS2 zG*!_e_NDASg9p<1Vl1RFK30+A6aJb1EUe5F60UwTMm!SK`6Z6)n-*QRI)QliHApWu zkAinTeOYfjM7?dxk74D+R!iZd;nk#}M_HYj>wdz{6CX%JQgTn#KJV|Ijjl&_c%9L} z$%5Hf*xFjbzgJ%j_y)HoY|8wOiGn9M(OY4iilQsf%gdUEquhEdulMhHoGCKHZNvRj z0g2@~y)5Qum14aJho(xuTOdd}4sTE5vh4HEyiw;ezQ+Bvf5Y=1xaja}3*T20z`u_h z_^!x#5vqd*_ODZVU+UvXN#i=i8~|Uk-Yu%I=F&CsB;$m5i?nVD{5sBI#x5^*FF6mF z6`4?d;;-kS9zfeqcBnr!&>^b+bz;KGq@Whvj`HF{q+~oHte{yYaW1=ImL?hLd9ZGl z;F7EE&Wl{Fe@Z=vvcUTO=GT0%opL+$PdXC);!@v^&~w>tr4oDIrz!}z%Vs@?WK$`gK|)8gAXaAares~fhF&md$;p{ zi)wl=9Se2?kXXConydFMXu-{H@lYP>+5%b0`=)nu&QpyK)Za-}2who_ic+{!^H9OL ziwcjjNawbD`*u}}eP=GUDVkf8VJGH5c2!Ddof$AwSN5vgNz}*C-YjnvXe0+Bur!2> zTU{t7sg8!e@+VdQ#fdwOt>yNT57wkuUp#vEDUXRJAIaDk)#PHeZr=)sJs55&CHPUL zKYWlMbi87Zg0mhH@AaN~&99AS{8BeWlH?VkpOL0Gw=d2?#tePHz&8zk-AX*^USI40 zM16t)kS#E{F^?JF$a_H#pYi1V5J|(C56;Se$$!&7^k<&*&~BDgga8WPc6pffWX+|d zVyJPxcjED;_BrV&DhR8L9_1~iK(qC4nr)-eQvL#iTihIxW+mG@6wC8>wV7!PV4{-z z__T(KavhxUFYp6iJiI@Hr$C?vYqdW_)QnsGtwNSxUjP^So-g5l;njYncL3iSpI?TH z(?z0v1rf%910O@ZVtDE_{1}c>ii>N!gKcMFlKhcv!QIT%0jhMVt&aC zAH_uB?4az{l&@cqq^~nbm2F)TGrfIkXDLiTJPYGEPEDXnnXF0eXrK|OV;yUNhc$m7 zAfBBH+tRL>?EMd%DvRQ(N!yChNwq&3UY18xAl8#1x^9Y@#UKf8ZHiHfmrYK}+(nX} zv@!p1ickmdqW9*AcpE4t=dLbH-7Btt2O~x)QAC=RE683aHIXG?P5Y}?>R;p25#c6| zRbi=GcGfbqKqe&^R&_Bs>_M1yTB3XYG^M&BP8`9se`ogr@Gk1x|V;E-CKFvLR@O0#Zx@4(y&!7#DCil5X*ZPY&c zRIVetZSNhKo60recUYVdecRszTa(uHF_0xLfBydM&eg7$)B>!RJqGWSxb*w$E9{FQytDNzk0d9O(v8|+=Fs6|D%d+o(L2-)qONIc; zTG$r$3M6@PnzhV>d0!Yvq7|iuu!j%8*vIjge|3-@AsOA?1~UOq@ILO`R+* zDhi;pvO=XFbN3=M{=i!)82xKS>E*y34n-(mRD7~#4yTdOW*?1XSW1bso%4kxfi3KR zMSe<5tf*{23{@gIkVUDBCztDOx4IsWLKEpl+?88=RZ&KN2@?Mrbj@I4rRIwPIOX8n7=4_;MyIQ;l1&m#yR>pSf2fB9rJ5Nv2WqGxQ3R782Yox~IC zNodes_SI8mHs&N4d_^z+!s8Z7QU89#Ky9>sK%j)i2KS9FYDUZ|2o8RF^<=Jlt)(D( z0Pv1qHWi3C;xgW2)RMZ?3ZV05Qhv1gq2Owqv!X26k{;f(o*jq~IhyzCkPXORb(`l| zdeXbI5j1Ma9*hOlEJ$airk@?Pxv|>qEtpJhBFB=!0I8=%WZjz1^u5Ms=j%ebzp1fm z{$K&Loeg~tP7K(vg1V#w`{b+PNsn<4O~8uOfYgprUE~^`te%9eM>wT#BQ2=~9y#i9vk*AD1)%4+x>)N& zA#K6m3>y|^kFtPvFS4~K-TeM!@-^IPe>QkKdG~G*Q5U6!(A9%Fp*j8M=(h~(yL`s{|u&W zbTVG>ufvd_DYRxSz4PkI9i#55czA|XW&HXVpS{1tiQj`<(b{=rWpb9NAeN>ZDcYP|^vw z3#Jp>kTa|R2{f-l{P6y^xmMo?ITO>x$+SEoV7J_+%|a|J4c04ki;+yjyI%jEm-|>8 z-*8d8$!~w=pL&;?ySjSnsriq3LI~QRsrO?u>3b6<4l(^C5v(U&swV0RUBD}4tSg7V z3=$EAI!rTvJk!}t5dODk8N?9yiKjgBxPrKXuGsxbldcvgPHe=%O%?Nc{K9Zondwr) zVbcI7jPI2cq5KDqf0ET_87~okXtp;pvUEcS?Z~i=M0`geUZpF@#;iI+^6E0g>%TSp zAavqgai-vU9B*W}N*l5oMx_T^ZQZ0ndF&`>GZ_puX#iiH$gk{+ot+P()#j%L4A8b z1CFzN(okV5V zyi2^BHnq~I(%CcWvs>D5@vOB|C0nk9aOGlhINx{v^xukbl_g~(k`rkv(x&1FQ}YOR zCVK2`*{w!b4z@0=RV#2z;P(s6w^kuW8;Z7c);Ai*`=zn-Emt`SR($&s?gph-k=7Mv zxNxfy81J{8%U<&$5H$a5B7;Vkzqs~PzTm-s;=eiptj{}2{pqKrNvMImSE;OdSTaZ3 zUa!YY-sEZ$kp6BJkGH(qp ztb;>|w3zcB3I-Oh*J#3%DAgF&7R9fpi)pXITExBg=JdwCN=LbnHtE~U>{l`57a^|e zywwB?I@J4^q&v`c12+-He$myLryt4;;@YXInottNiOAFE*C$C7uPv~b`4{jMe3m*x z$NK4I4Zxz#L}A#dc_&S5={z~EmqPdRc@YIaECB-!Wbp#4W8j-o?GW{H&9MH9oz+8o zwtgJrx-32#Wd8aoGs)7Z`jPT>ZO1zH|NqRJib~ZngE=3Bh$@VbW69Q5PMA*NZn_hva-GW?cAG)9Dl3{uZL<8Nb5Z#3iCpI%7=2w+5KA5t%I|L#lt#s0!86 zk=!W}PI*Ky#0oV(_yNWn@R!~9ReiFK%Xa<0q>q8t$Aqiqw}#EVMMppCxAK$7%jZKj zr4)ES!tMSf;w*EGv^dV;hiphEyjq~ogvpq?TuoOpeuRu*sAoP_*k|Z)YmlL^Z0N{L zh}{J3{ba>w*fNK!bNptjoyPK7@{Uk{e!`P-y9F+lBfG`T=iA2|;Kkb}aqM)b`a*oZ zx$eg&-cP^EFDRt{Rsj^2%#`v^-Q#UnD6D2zOG|e<@`PI=PLA1kCF$6CE?&utlVTd+ zw+`gI|FNp|6}b{nJ0V^GIymwTMipT&y#JbY{Hq-Y91ci9*qE*Ll;!xr{ohmDZ}V># zQ~Bxc-zRsN;Rjeq+RwZ@AoLHD19Fz2Be(PCH9eMEv!n7#Llk%0Mz1|ieu%Kxc|~Xj z@EQI1q%dZ5$ke7hc&EL?WEqE5r%o#+{}amEUDMyLV0Q~?wj;N_h7f$9TDYj=L&3FblH%SIhK?p8~JGV~!CXO?*XZX#dh4~NiIec53e@0C7s z6?LdArg%fgtDD>_f_&a~_$oYi+8$2-ku_+{&r?W1@qtBQB8znaBS+!4@eBPYzmug~i0=@or=e9CDnu8!dJ ziPhf3k9C90ETGfruQ?VNGnwxTGe|~|V^J8Ki|cWxhWu>RY~1^c`d6An^smGo##3u~ zMlRbgbr!A=y}M8AC2{qFmb6?zqxgGBM`N^hK1_!o&VKdr5$#-rvy02kjtxfIuv)1l zi#Qu3VjDV=Sk%3~FkBc>%vEJ#Pl`QTdtku3z`RH?{*_46c@>jc74)=37%cc;fsyj9 zLzjC_NO%1?3b&u~ZvF`oi^JTBWz)N| zFGDkRxV6=LZPH6is(+Bq3a>n)HQhP3g)F|kxJ+)?{UTwx)oBQ_*W^WJ;&z3bq=jKt z2v%=pNVTq;)&(AtAEp7%riLCC70x! zGi0n--8DdURbhNu;>_y;BrtBivYnK4n_)xTO(ep|%eO0m)DCU+9p0(1v>qxjhLD_= zGyqQgM^D1txAbZmrwOgqSn6gHf#u%}!UsAa(qTbR(p$26+(XzD@!xEh$i1r)t|%Xt zY@j-IF06=~>o)1~I{wEbTyX^92Wh)Yh(kqdz$`t>1B1X4g85~Salwe|TWZ%x2IGVk zX2D0czNdpzORZRf8Fn057YbKZHU}@qsh*(UOQaUrVxE3yz@?Q!dt{%jn=+;kFH5LF;hS&j=^~dCR^8LR zjb%~xKkMr{W1UOF$_C21ttNh<+O=I3df*XLvWjPP#%V=P&FyQU*1!KS8f@~fxvDYO@|S8grJ{mYoXqKpo}NfZ8b zyo~E%?Wn_Vx;Hac5^TI%G}sX9@%1Y29wf`Wd66xHzh)s#8f4tiya(W?>>8lde@o6S zlouIo0+b17{rIHpr*2RFms)vL#Fi6TSSd^srZJ9v562ofFK-H7)~sfk)a+VcWXpew zy_-!;V?df~$(pDgV!rH<=P6yJ`vm11ZTJ%%fknA6bjV)GzycMLT4Z~zyU2J`-QSjHP4=aR*8l5y8pm8gQNlL- z)w$+6o~P$wJYN-+KTplZcLfM<)o68f%-%W-|{1&w+LhHJE2r) z$)>NxUge&IV9$>;%QKk%*)fL0shzQ~pmnp>6u(%|Z<8A#mQUHxQJ6y7Zvpl~impA_M|Ly3tgHH)c@!~eRyT&knHfVhX zx|ua7FHtY)EX6OGY8#{LvV1(NwaD}4cBti@SZkVbkV2?v1pS_f3-8HXut;jhx|{|A z&tP?VeHLnH+}p8`IG+TgZY>iPLuG!K+y7`-Z)5hiytF~{&+wNOt-HKbRVkT*(=Gpp zs(%iTwEew(^0UPo7oz4c)}-mQWyK_v6>Fk z1q$q{Lq3Z&Xxrd{Cvnp}&WUk5?fCis8`PQeqCk0bw&yBxVlEP2j*Sx3nAc=IY-`Qpik#)E zen@tRX%*)pu4TKdJ6hGCZ_f6f{y*>PC2*b(Mdq`$z+uS6l^x1Il58$?*G} z&jaZ6;s}w(-Z7PD@w>it{NJov$uNETX1Q%b>OX)Qbcv9+T21+d&Egqs`W)xf2}<=$ z8?i*|sZ&juxdJxcPZFTHps&|o8wQNuLR*t>sB=qQi!_|JS4|ReDz*_@4#4k16U+HxAVpPOavN!kP@WJcJhqEoa4r zx3#&BgdmLCN9yklPmbjy(~r$Wr_IDL*uvK!R?d8cURx8or?obOnw0aanj3|Iz=<^q zSU0a+w)#!M-G6}pz13qZ?WdS*4a;+urYPQyb)U$l8h0beZeyD1=>uur|Kb6BtoN<1Ua=3K+ zT0ZtaQ-#XJT)|60(H>$h4Q$q7GT1kpFUeZ#Qm+?hqud`_*u#li5`wUBeGUwF1BYep z*E&Eb?jZGBhhk6F{#?1IuOWz1$8p6d$XX0)B(CA#BSrt;tEnRH#@N&VHO4+yVhwm- zlO&lBo1v_|4a1@5O(COafF2tDYkT$@Bt7BK)#YYEL9LOkqA1 zeU`vU!o*oAFOS5pFk!B3ew|HjqauKy*Rkh~YWX=DJz@TA}zm&x#M}hR@|GW>k zTTYX-e`@RdI?;OqJwy#;G07jLpb)nXMnsH1q_!E~)mHDnsfGxoHxK#mY!T`a%zXc* zr?s|(XOEI0(n6(2Wb;dPQ6qs<_({C`^@o6AX;{?<-7scMoPRcLiP9l)d0AGfO_M#9 zphazy-QKkF55?>2G7O=`;UT~P%G#k7q3xYgBSWvv-@J)Tl@RP2g91a7>k9DJ1OmpWo+ zi?LU1aAK0@B?7rFjtms=77E1e5B2XB+1*YWODOS_TNrSTQ;n~yxEA&2u4%ln66-|Y zlqS&=|603I+|(m39>(32d2~J|03elkT*>(gy$gD z>>}cFV8<8!zTv7C!`@;uGm8jR#1H1#%EoHu_@V58ooqj)``AG8HquS)mqHT`vuT044CPQk0lVWBu74`I4a zm-x&{FBzVxOKvHYW6UFK4qoF{X}YLT^3$XI=Ao8}$u!R&n?*A<+x@qtW5+-&m1}B! zs_ZxRt|v0{3LTPckBZbfasz+v?hhmW5*ihs@axw#3gf1Y1E8K*(KziOWASAL#~Qpu za*L`Qg@*+4Eo<4e6mSp}R+lF=`r_@>H{xQRRE4gKOvJ8!ZhKS>w^9^Uf*=%Gg zN6J_9@Pvl3qJlc(0LyHpr+(um+UwA@0k+r_N1}^arhA#k7{)ebk>si9d z{sw|?#ZgT)<#3d*oGsa33YyE#OS@R53D_20b#^2dIaE%k>>SER&@0JffF4w_?46w! z=bSU(@1y0Oq1x`-Tjui$(u+6qmurmKv5|oC692T=<6Yb-JD1jWU!k(e5I-Ju03N(* zQO8r_$|4_<^o;U0e|tB*1>Bwr&(K`m!}V`akf<3#MT3TN=m?3LV@)QvsB>Sw@sM1? zB!hQzs4;~_pgjy8zFn7Vc)$_&BjVp7#|!NDu)P)fXN3M5rG$W!naf<3hYaAKP(=Y; zB&XyNF+w&s05ZqZLIUShXrwoF4#QlR>jbpH;o(QEkM$jDke_6z6eS8c_@MsM@NX~J zFT(s(zZ3NjaQwOYUiI1acl*=*z5Syaj)De{_j_xnZP#pxuW zrRO|WnIf~siW5g%@(C@|hK=_on;$1Zjm2WAay@;RS=z@1jR#TG5i6Lv#OH75PZhj2 z5P#)jOFXTKsLtm$G7a7Mq&}e6U-QTiOpQeMcMp8bBEj3w)#l938zG~?6q8c)t`Wo^ z(8IE!i6}zHhscwicI)T;B-~{YXd++orA-tbq~E?Dw%59*bWYyZxdpua8ojOaGx+^b zUlaM3IMvrgdLc;nHX&H~0lEZ!mORwgf_>1+ubS(|{r?p;^snsEy?uOrpd4olQ+- zIy5lb4mg4a0vb%7`d?Z?F#8TV8LKcjgeEw-2(58&5y*0Pa4)3ve{nJpf@GgTtT2#U z(~0E;nu^!;hxD}&xWJ!+sP+E<5E)S|x{n@yRDOk9XMH0ONQs*9GCB=5&00=h)+&t} z)uvgyV-K=@D^Vm0wE(R(6VOJM5^<+yLV+S#yn0?0`arXTMtw|Qx-rjV8og!2zo3ji zHKXHsU2XUg?q_OeXPR<+qzay~&>aM5D+dCSsAp{KiY4i%;r>UGSrNnN8lXF(vq60a z5dQVuH|JaIfX)c;b2rjl(a z6iBP2pAM-pCUv(=fy-${b+avzq^gI|hAldBlm*YSZg43%sS+b*k0N>;HyAZ>76X-g zK~V%@b=$ zgH?os2jeAziPOa7BZAp>x$dNKbj2inJnY@;Lkr^cbS(Ujt-_Rd=R%I-;r`CYj%}dFAq=y{KDxZHVJhK2sBbLa!w& zD}O_OKZR<`4jn&brx1@SsC~gbB`(QOZ*WMSUnx(Q2&ThYV!o`rXEs~gdm^7@V$+-+ zkpUfT2eYge0HoJyy9!c2DlHOp=!XlA#22$x_Io}|7sL|UkTo~>E;;kYI$nX_b71I5 zw{maooPU35|IH9e%h2hwIDCl066C~_GYjNh*YEy_`3FeZU~1U$48-V??W{6j%SS$} z!BZe+HXGDA4d*oB_Q%+Ga{1vn0?($j;Q+h0A)W3=jI1$SJ$0n>0r~7R1iw|Jilb7E z#)!yNTV=qVF8Tev+BoXRl$#pL?LJc(fyytD0LKxi&i5!38b*z3T_7lRb?r3Ybg8{z zL}ECr30kLS!SnmfCDYs9b7z(*>qr}#ek)a-`u^o1gE?EB_Ikz3_PO{Hy%C(wa^;MK z`bmItyp0au6r?26TB7EK`BW@zu(lyN?IWV?Yffx+P=aXlZ2R^VKw|t`yiscdz4}7a zS3d|oLN`wTnfY(H){!yTy@!@QvSMQxrfs)7#p)g6*rF@3Zay%_rkg3CimKPoDRmXD z7o)u}-yp7{_*`CtEgAUdn|AHTtNa59ViH=lmDVLSIaKh3bKt~qL>L1q&li75 z7~2h8`}(uwg!7(RNeu5Z$-Pd=5FM)2PH748#im*O^_V^ch#ADexS>>sXvC3pPOg^{ zy)v(;Th^+rNMMR_eN-TAN7D2)SBbrt6mgpF~jBMiDPQSJ%v}IsxcV#m0 zYumoR1!^;v9HqVClVWpJ&#pp~skk5;EG)bn6XfVX;+}-h_r43qC!{XXM`7eJQlms0 zS$K!4m~^9VX?$^TXzM4TnhljnUzE_Za=hUikr$ER#lu3FXxRR`nW_D=bbt4rP36dN zXkQ5@SP%Uj%jU#MS3J^8G3?El6^D}>JlrQ4Tf56PpG7sswrvBx_=B;X(~7b>y{J3w zhISm+OO91z50329azsiphdDB_WK3e$$L;0&S-4Q3EUqJPW9v#RGFHOn$L}omS~kdP z{sFdFlB~-7CvtxfLakK4#+(s;qjK_w*FHK!Ds>hsiANr{Z_`C~=$7XlABG8QQF1vL zmr#Sl$Ek&?gSm%Ma=es|5M#vG@i`h~9!bdVSaUwnto&d{S|7LoyKX$*F-1?=dC%?{ zSQ?l+y2`&K%BXCX{h=^ES@o4{4gLcw5INKI1LPK+r$TcJFl{pN#kcK4ETCe|l|Xh( z&OL<{H>f#BV!8>d6Rr;Jl6hlP!8Kf=u>uvAoQny;tMCm%-dcHcoEnC9HeHk)eM*|J z!L0kK$swqLsaIhrY7Ho`(rf+4t(=Zd4_{$K;*I+rVwU5^e(*uv@Vti*?5QS)ad*h$ z=iivvV=w&!Z0yeJ_XjQ?a&WGG#_ho9rm%HNkKLx0H&!t_nNJ8yCHxEpttMukH*^we z?nPB-t=R+yrRrNyXT|5p>*41x>_MV|{Ad;u4;-2_mE%@*)>#|FUPS?r?B0D81@W4l ztsHIMZ%tJOzm(s)Ba+Qq+Y7C&`dNZot^H3C^PWUxbPY(#i;x?i`=iuU#eCC(%3M;P z;Z8rRHs}wqIIhRbHFo>vM~s{xi=F~Zmd(^ZT3$0XVpYCJe+V%KqKYzf|4q@WA?AEn zwX8}CpU3j!OT$g1RIjpoi`?BVmr5qevzB>1__@X*0K zP@^3F+PvbNO!V{%Ic3%s1*vVR1k*}xVOva8jxn!PvwzWpKnB{+Qi8$#Pabb94#agK z)?`8T6E`2j6m4l9Eu)g;UG!6f%F7r%KXe2k4!P*5qqf1frTZtAM;gJ#D;L4Ze5I^v z!9M_WBb2!_$IK}fveFdd3cXaq;m>D5%N=4djxuJ1_GN1WvdWLKy0BH%)`JbB_}v6} z*agYlePnJ{h#IFH60#uvSVPu>@wFDq;+?Md_Go)m30(DOG|_OWSvpN!h@3A`?6L!* z?*fN9gkkV4QyhtG5kzl|y8&0GhN$A-@Z0tT2a}Nb7NEcBW;{3L5fnVom*U3@e}`5S zg_e;wed`w{6mAWL>7lo$GnVNiw|cIa7-UG{0`j$@Dt12kKe;eX7`nu$jl{0Igz^dn zVIjeHMQtAZmLt+*R8*eidQ)}_BV6oioGw-TI#xY6U}DTL*Bq~=gN%G3hscF&UX*i7 za=5VI2vfCX;D)_9(v1XB>G3G{hdyf=U<>&VK#akz%_xz+A+eT;@e<|EofV9HI9^s1 zVDxj-6I8KOCL@H=BO`;lKY7{ic3NEDc#7fpowl72 zZ~B$CA?(xj`)n&3u@O4P>3j66TRBOd>Mz?22o%}Ntb!r$MdJ^+^ov&p~#KpW)-ZJ>A|3&Fx42YdVcx;j$QB!?K@RaE12?8r z@Xk!+Q$h3Y^Esxb{$qoLG|b~#tL=|?(a@!V^>6H=^`Z?badn#pBanMi6nQh;yc{UQ zj9xyWk<{!ozo~<>Ba1cnuS;T-w)ZyGQ0?1-NQIg;WWJ-eRRjo=t^7ux$t2(NtL&Ef zlE(YzjLm|DWNA(75_Vugxtgpz^T|V1)HB(rXYN&WxLBISIoVnr99+CNY|}oBJLfgG z${*lq`aWo0>$}m~@jY@r1-;K#93VvFnH+=^y>|vrF!vp|VTxhf5H~^ugqCkP-fD!V z)S`m^*xO8^0K7Bp6Dh_+tG7c?e*o`4fGOFyx$2oazpSWj;G=Lx#$J)(3{@H;d*Q}w z+yL*R(O7pn4se3zd;M02&Qv3j<%pFMpbhbxHx)#^_H>o^d>z2CnujWWv_k zP)yQTfj{6G_U9T*0KOYZ-wP=_!?Yf%TBy`Eo$^_~4u>=CxehXk1^C2{%fUadcj4ZW zU>*pt0JSnh9S!`Vg~u5Jk`HRvzW^h#(Nx&l3NT`-$4O;knfW!3vwy;`5PzE>G3m2K zZrEIeTH<+D832@2?lYlmhHCJOuhhQ*uI)>MY~s!<(v%D0Qv?PGdx2QINpUY zTvBLn6AybWj%heOHy*~QekwoxB(WhfaOaC>zo#Km+=WJ@FV=efjQQ>_3d$Bu2?uZYw7qj62#u-K7vXvG`N;`<~!R zh@u&^q9rLBaK!=u5kG#ODx?f-Ii@PMHSIWeD{m~`viM7Xs(Iv}Vg8W!BPl8suZbuL zY37&ir6a~B1Q`fqpsKcVpUiYQz>0x%kaUBg$FmYmMT|Uu1&ca58z-&aau7;cX(d#9cPZsw9fen6nxy}OIwz0J6*W`jnNe< zGgU0OMyZ#!g&(uqG@!bG+0-NPU5j(x_LTo&xy?)@k4#&*vS_8%zX^2^f97#T+T;2b zuW^J|CTw#JFL=PIKlBQ_j zDR~FY_oGofP}IU|kN<=TuFM}jIVf6?O**T3(x@xLWbKoa;VJZt2h24Mdb?NXDSjwt zq?gcvfA?-588i{AMxW#|GEZ`(e*r7II4b?GDILNl+e;7A;r(&`c^z;T!!IC7-}7fKY7v&5~BJukIi!DW^4>gCnUvrSQY{%UuJ_zav$UXF5^0wyA9A;h74!Bo<61a}*cSuxqUq zJom`9t{&<80u+fgj2*ghxHA+%IQhn+WpVeW_kX4W_MtpQ4|VNj`p8sk#!-e!#DvJ!5h>Hl$P{m(@We@T@6SA=7sax-PN1}

f5*b>q?eaSOE9c8(W74R?(OyGI)6~P=R1idNC zS>tIqGnczaf^)er^+XsrW633IEk0V*?J<}taL^?*105VjxN<{&jwkv3VeyHwRn}1gOyH zAK*5=i&gF!dJ=?Ujivc7G;pPbz<~KkMa++NlfHj@NihGrK7OZw@bHN`rNS*zb)yqt z-s?IqUFX+%>A_S>p>1-;Y=;HlqJnrVQBH!`%#Wvq#R2WN}SV&Wjb481m72DvYy)+=b1+n-9b>~R7gYkiLV@?PK4h~ljBbVwYsxALNr z_8HyCW3k*I+z~Td(jKTaRsF-fk3d$o&FHyF^rfl26y(xH&_~_f_O=oZL1V%@J-;_H z3^B+4Q#M8ScJ(&^qO~{>SHf(1DcRSRpzixKwyHP*r{_24!&8zk9do~iS#qXzK#nK= z{{Y2N(QCy0P&2*z+{*sWe=K3SGWR^+S$^Jwo~iI#OYYb;UwBzk{H0J?*P%zlo)$6P zX(D6UIkD9U-GBa?ax)U+U*FcZkkv^02!sej(!Zd~3ctmrZvZrvQ&C`z?)hN#qOsY?{d=uh3*z`5%fPS8#ab zw>Yw#Kbs1~81uEbQmu*lMTdMroVe=2Ay?``5A|jE(!aQ_nT)*Jy%ae;=Y5h>NzM25T)J{n;HRbN-Fn( z7-jJo_Z7@lejDS1^X#_$KP>&#QvY6mu7hcO+PyAD431@0uW8eY-nNAt9bH>T&*5|LuA)Xj> zyv(sg`VyAD>k9IX-6;H%^gHR=1iqO}CJCtgiL^y*m(_z-{Jr7UmH2o!cEC{|=z9{H z$JIehwoh&9zO#!|5fCeK(1AnZM&85qyZPo8u`w6h!awnpq-IOfg2yPP-rYgzkk=*JYI^t$&d3R$&FwAnE9LBukFy;s#R)g)z`3dSgdIu zdw?>hL>Ovr7WM|%5j^D9YbF!r&nq7KUJi0g zA&e9;-11DO{lRYOrSEBjil(k}AksCSC9-5>`1McLQNH_Lt5^7p4-7QeiQr0?PLCN5 zxqDEb^+2xtz@=8dpCMFU?(;w-P{(N9_FeJAEiz1v4#99$q6o+!1s!4Mm1MgzJKIIj z>m8VMO(!$PiqZGz99;(n#vk~Iry_s~!k_4Wl{;9huze`>JE>-kio8vDy!Q^VFX89vSew(11v z^wrry@+Sj#Cl(_n5>*FRGlJe_^F7~zL)1!i@FU<*+M40K{y&vtv7CK(?9I0S0A*Vy zwrUOq_m>wGddtBerc6GM2+7j56vV${_#r#By+>cloUezm=F8bfRB0dn&V7FggOJcQ zugvTGWGSty7p>oj+1U9#UcU@)nJK6+@F2PZi~bO1Qu zc{?_>ChBT?#%j`~;UlLIL@FFKBpX4D&nGv@fuoms#JHt<9@u`DW@Az} zEw1_@ppfcB>|iWD$}yH*91EEKRj&oA#llvN>TeHZ)97=j%bXbO^N`Qhl(l^A z;TUPPLbG*2?H&9*kI~ER&A6u93W}9m!Fxn>PxM(DxVZdW1EBe7S~5T;S)iT%fEqZ& zn6V7XIf~pC)L}|i(XGyLFIW*yK5Iu(QzdGkxi!?C61yP!^JvHxN8#@MkXGdTUDRsR zfg)?>A_4w zY`<7(xTopmct<76`zR>A+R6IA7Sq*YhiJOZlIjSjR++$@{?K_=bgQfO((FR z&UE@TWfAu+B!>?@4r52h_l{N!`Lm@G+M|Bmf`5UTl!{u~teQpG%Z4~K1i1H7J8hsp zl}I({4$$9u37Fbu1rGvbv1tv&dI=Ov@yjq1`lEDSbGu@1j7?4^zDAgz>)J45Phl%c zMeU6m{~d5EbE0(?UV0|V4oNZcM1QAH+V7kG9Fr$y@=0H_>2;4Iu8{iH`xqqg^k=>anY(Ua;LqduVwjFfY^L4%L0#k{F;#HULK~EQhgk3xDE$;d{bN zD~m$d*-58oyQ)<80v^u)b%^@;eooB3o{FD{t0n*r_mpW z-?4Zo^~+*#LGGE=H)>on^1tN!Q|Z2nWRd#KaYbR*?FbuXcT2}et+#w@bBKQS6MKCk zrB0bMC?NsR@3fT3a0bijJiD7l?yQq!{b|^pZz`OJ$NIYYnuXKy`k*rRk-<2dt0 zc#P*EZcmMe8oeD>*DjIJl{l=nxUOya!umG=E<|uB;oFdyd$Qzczfiot9;^TCd@*e_H%TqmkE2@AL zPdeVG`dOKN+DOS1#{t-A$-@Rz5$?^fry#C3w%;_ZkZD7f-t#?)nA$}c>vpVCNTE}! zB{&s$V>%`ExGrPEv2KUdzdtrP)(=8^hqjozhu@?VHuMsf(w^X>s1FRMywXB{W(874 zAUnyZ_01h3SNI@-DPyC8l6C)zt*UawCMZK<`)Cew@n9twM7Tcy@0&154B8)}mxT(bx{7krZ8X2yrC@7$_q z=QI-+1&2pk;rTj_PBA7N2XwbXjDO+}69raVpugl5?GX?k4Oh3#{fhYO@19QQ7A;nP zI2mX~0xfxL&zSf9*;4+H&@`-1{z9du8{Nk9AR{MJw8U#(Mqs6$WwZ2c3&ABPTL3K;?6WU7ieB${}j&{MDfMB9^J}{wN*MLdte9- znDExPh3t3buAf0R&TnG#57rh)k8jkg>K85aqQX+uEbQ)Q5LE^vT?hl*4Vt=VF^Wr_ zR^UZc-ult{kCFmoKfy#+ti0$ja@wGQd&#Iek(ILpDeTM)mqAIbH^qR4Cc`Fu!f8fT zIZ0%@HY^;dvFZJKb`?rexZRV4vlf0+nZ*`$uUcqB*;|&>MM4%!M+4g^MlaErooiOh z%V+qqyo@%8M?(eXCK`!psOzZqC8BZ179;~IetkO0F*Ku3dXLjC1$ZJqc29T2B(2f?w>rres!zBZQ1chwspAG zA+;&G?fsowGz#R(7}8GeM0|v>=zLqV0Q21LOOj>A-DE3SQ#0xaYcyC+t?4U;hU9k4 z)$xivttt7Qr%<0ZTAD7ydmLfdC<`vGdS&CdN$(70b|QVgx!4|sa-;2bRQ!;*{lav~ zy1R20A&OYqy8<}|D3iKv0UPKt#3usOe7@OvA2)k!DO_vvpg94h0CSQ+Sfr5M#q`Pz zY2TeghpDg9_7`rU`#v+>B&!OcMQBdy>~~wsHG?pAT;jfw`bAuX6h%sN#%Vwrn=7Km zMl47_v;EAjJc$Fy2isa%gTmF)1=1_FhilcC?CXYEXjJ>&6H)i5$6FRHIu1a`ls zZ)QtYT}L^$weEt$I3Y@cH67-F`Z$73Y9&!?)$2d8;yNfEia&-c7lK;NPoe2@vp7+8 z-U&PhpYa>{W6j_Ll%F7;vVoi*I;3cwzDBRu^p{~q79s6BaKws7!q^!(?bfPJDnMs- zGQ%H5V537iCPLs>cS7xZGE@0wo?bnxdQ0 zhC_YfWNEr}YpwI%lX<DXoR(JxPgByc#FQ z5AN6a3eene(Ly@iKR^qj4p|M^gAn{+l@-UL#oahxE5ia6ih3$|q&!+ZQ@O;hJ1yjC$=5g_-yZ~|%iMTBg0U+BQT8@n#U zBNGTC?7|z$sUap3Js}ucTIeAMQH!xvfgjCI64@2%!rfWgSfxv6j(^U%{e2aOc(1ea z(i^1#vZ8HTB;MRuIaksopBwDB!Ihek$g#~pi9Zr@GjW3Z#_3}=iL}Qa+lQ%2{1d+> z(pv#*!J=!u1P=MfsC4-nPAZO=2BLz^T&SF6yvan}JOvcwFEIj}(-YFsf+Fe*ake#_ zYl-~3T64~_Hd9wEjb>JDo4bR(x&EbO4J4d9vL@h5W{oPt3D0?>*xw+u(7asHEdnoUFS1Y#3kSJbETfs!x$Xl+f&QE z)9{0pI3AWx0$W7^*7&sWQgfcA5i~4-1$>eP1nU*VQ0TDfC^yFTTVnFVax|M{C4BW} z9OXihxhks;0cXjs@%iCyBrt~R~4VPG3!CQn5LPRv_aR98rBQ#Ia=Tb1r z{dddv@sD$X$$e3Z@SYl2OLeK%G}VrarXy^IENobHUCp;VymU^DfbBrlC)2lrcEhTY z_kyazchdR`4Lm4hsImS8|KfVOo{PnrnD2N&6&)^b9RyJcdWgY!{PN=e0K2K04tw`d zNFy!_ebFfK<>^)nZ0z&DD6c)vk&@@*Qab_vwo_3Q2VGu06E zm*VVf3{xx+4B{FLa|;ODyC78r0|b$vz+l4vrSL;bk)}kGf(EaXqygYHcnSG$4ILr` z#DJho5&92j7$gn+-zGp3;J>X&@X%l|;{U6hB#iVOL{>yTg8^-`I|3|)`A-5G;t$us znr$NJm-Jz6=#UMKI+M zJlUEsN478!APfwG$kGi1qJcFQri6qCivuKyf5V)HVuKPx0~oZlS@r)4(X3nCgn|>Dp+y7* zOcow_|Er0C)0^G_23-u=WDgq<{)6rEQr_w-1-_Ly38DFr5LP#jqG{Xj+EJ8f2QbC>o_9k$fQLDe6 zauCkWr7$okS%sI*L4!5KIMNb|d)HBdhGb*XjjH7VUx3ok!8H49gs|XK3owxh%1g!o z3j}u}cmXT+-}M5n^WTyrMSXEj9%@U8At5N~4Foy>i<_0 z_WWW7%|t)~8)aDJLBt7S9b70v7XzD=A~WhH>ynQB{4Yw)iGD3LG)s2XbkX$2mmHQ zKm(+q?;4=zqyQ#P6OdXlNdiR;3+X6E*z29j{wk6Vl?ZcVo{4= z6#>CN!RZ_a3x$!2p=S7?)uboE4F-@LQvM_k3z4%b|2wgm_@xP~B0SXqDr>$9bn29n zX#FVGH!HA;0GalpAc`#nO4v$tm^tX*vS5MGXqXEafO2vOU^rngAaFtSe_aNa86*V! z?@9y!LJ*+A`=&shbN&V7j`kEwH3qD&Bst=N3#FgRV?J`PeqKSuvf>ay=|O`9LJd2O z!heczO$yAa2?*7sWzB;z%Jk^q#|k7Er3?uR1}Ou;pZ{T$(S(64%Em&A{{fW`?v#ug zo$mh!QU=!%1ZU))&S=K0Vr)bjTFMpf(W?mM|VFOG|c#!J!_fz;r6Qg*vOrwO5_*=8U@XlKd1gcxRnMr<#YYb5@0t}iz|SSliNq@;(AFCV5i4ts(|$2!?{ ziZ=3^Zo1%QANXshR~Zbvkm*V7uhj(dUbC1rglu0M>DjO_k>k;{Ac6gm?A#j>2dN zV}bNum$v37$mbby>2b?Nj6N=IfAv?$=5IXv04-}yLDD6rH49K^#9m0$( zSGY$)6|Bvy^w9lNfAOpD2V+k#+5oM@cwRot-Q(b5bS6B^ldcDr%?PqSfbsH_-g?N~ zC{p&Uvebx=c%C6O_a3T<2w~4o^dY!a;p0#WL<}^#aIVwkzMpO zG|DtPpbXIIUrjw-g#&zLcC}Hb@cn3j%{|Bc6@r9W9aoy9-%dXfwb~I@r;6XiIt6z1 z8@e9Gsl{eIh(_FQ2XUR7=!RWd#6o#zl99neckYs1pyXEW8LhJqHiq0pgA&06zIW@hcq`fGvY+HnCh2BWQuF~&T?RQ)E@>XhfYM{W&`aKPx5orMdF z(v@Xw6(zTq7vQchiV`}EgwfVJMCFN?Hp(b+7z=m$Xd9*`;zT5g=(fQB{!`yyhJX8nEs84r!ES1Q@VrHTiB^mPL{?71;16Lno_(f z*CG2=6i_L~DmN`()5dBaoeshGRkzg9=AL%Vc}3Hnp*~fa z32no(hb1clZv%N5OkfT?#aH-rhGSmR>qqygD^D6cMNAKrm6ldxs|&v;yFxSFguvFM zTSr5WKe*u34$&5pomRSu;?u$`GT&K{V4|Rz%p9L@VbkhbH@J_ljnyNtFsfGTVDZ^L zNYHA+j=C_x!ZwdF<=yffgr+AHh8HNzrW&A5pU(=B8H;oKv7&8l{gXyaljbw1^W&5> z9gObjL=*5L=QGK%(EhH}hXPYGXlJh#mq5&j9i=lOLab=HkHL<$lD-i^A!aToMC45v zFH*rd&U3N1jXkIV{0JeH!N(gEr(DjgVsVBIVlU30vN}HOH#OR5}0+ zEj^8(kjIFVmYfS+WxIf!p=Z>tqmm=)wuL^KaXSVEHv*}Zrk?k%iQo}(E7LdY6p0cY z+nixTO%%Q)e{dr{m8jOG8k?Q5(K**GPRQ@#B<@0Q%D82wH64mxrKD$2n}gc_l`N-&TA6LD$`TXz^GNo;X8WhXbvEp8I7rb@04hkp#BV}utd--9CU$veW@ zDWjwEEiM9O?ptv574`2wZu0kfi%ey`NBM7E-~{B7d}%TfoJ6zWc@pW0*bMKlEv>8a zGCtTtQcBEl@Nqp1=}Qb9>&{PG05Z2K6N`(Z$ATRs3<&r_iOm zVLSNyu~$K{LKf;do=oB&qILIlqa1NU&`r9*BMekR_!Roq62(OdKSw7`&M_sIjI-ES z%JEr}#`xl7;ti=Hv?y5gv!jZ$9A3!c%N~tD39z{)*~MyAC5L`5OOe{erU_G(D(*1N zUAA-}cgBL^EMR{ETSk_qPibx(P9!O{`Dn4W6jcKqRr-T_wyeJFU{!D^ELCoF&5r{X zuB^*YC*BKyZ7Das(P-h0&dwM;`n8dhg?dVs#frk3tTF)*msUwIM)k|?PV+#QG5JU} z3tF&2Q3o4LQK9JgbgVatVVnl=qnPUg5o3H8@c_lGkt=f=nYF{6&s=6WI=H9PRb()0 zxwDdvd>JM#Vq-i$d4Y>r~Y+1cMP3)IJSg2Yp#k8QkExl ze(d|zlL$L_(1@+0E?b5kx9QugdzP-u)WXP80tAgSN1VDY(aApmN{iksI!K0X4~?v# zY^92m#Uj}olboMbF3HK0gVtoNc$wEbH~Yby>Y$P*qgt;ldqsvnmJtaYVH2GIS@&rg zMt1=nQ8@iLqN#@wEfTF@UhL8}d^L}N&ACE^Hu)=!57l9@}`BY-uf83}t2r8un~kS?aZo^3A`)I4cJEjC#0U@=00 zG(*SR$5CvBwsvV=rZ&PZN$`MGOfGIiyVEt}A4VIwJ^)PR#9IMEMP}@SMvUDkVWZ6L z**8>_7rfOEwW_Bk zx6e@m&%3056MIEi6g zJuY3!34g(|oT+>#=Z>7mdGueL-v8Oa;A~eg|9>{HGLQuvswb4ZXar7ib)e+*KNA@8 z|Czui`wX0T94oZ!?#gtAr3xmY%1JZ0n9ezm+$)SR@oI&ru0x?TCREPGXUeh+ji_iN z2zzH7X~Ta{%HuzVaAC<$Rq7W2!2Y>p#j9u`nm&`TMA{X?<*!x3c9sdlMl89hnWb(+ zLC!8c&Fr8!-Kn$UJ=XmYjVpqC-yjxSB=L?``i!>B!vLxLv00U=&_tGpKrZt`a>`Xe zEK;+?{|B)^PQU!4EfFgqnt5mawf4q5%OE+BDj<;T^U47Q3|+C_R9?U_K4bS6Lm6deA*K2f%ii&-*ArF z{_>{tf3djGgW!Zv`$ikCKNuyV|jwy>o3}C8}>$|2?{{SQ!+)7`MZ=xjWoz$852sbKx#L-}w_Gki$M=6EDJ8D*U z!eZfLudkS$Y50Ov$qi$3<#i6OB_5`_fSL|7bf!(9;I<%R1HR(ZLZxxJ*)um%o33{< z+RQ<1meoQ+tU*SGU|zPbxositEH})Ld!CzJjkZf;0QV2rHdM{Sbd;H5V4Gbx_Zx zOs~5}-~g=FDj>GRiXevIT*L`zO-g-03@#O{NyYUTj5QOqa#Jf&exQ^wJ|%KvPyw=9 z9uk4SPzJqK5YDOvkcdB``j^yL-SJZ8+ftK%`3p;yih>r+#e*A$gG=HZS$eo*Kg`8F z^G(%aVDf;NJ9i3uuK2plD%DQX^lp41toDc(!J~6nnPnIihtzI@@akK*gKa=pU1L`% zPY!Y8id-9k;;Fa>UMM%G+;y0iN;dIgKVp*~BI*FZ#|qa4P;NFlO_VMjM(7!$UoQAS zi>U1(weC=lA@CxWs=AMsEZAZacCh_Mh@;V~cr&Z(TsS z24xNue(QBe^$7lO95SI`42y+b!4+(Vz#bG9#um0E+I&L@lImYFimCw95|mjn=zh2l zX9C71Br>q8xD~EGCsjKT%oyfsR%IN%Q3UXVTaKxUt{9f;PRtLPGPq0BRJeYket>2?BRm>Dxcmh?jJk%alEnFg^eZY`aFyOeJU_y4(N|#xJwu^vj zUDl$w4w2U^4jUPget3qx7B^DV!WTq3jwNEm?S>V^Q!YA%s)`6%1W;2kSBX3U3$WC- zpq?25te+2P+-(dSrYnt--6xqzSwtLXaa-cs<=_^}7|X$i`yv7ET~bm`iAmm6^vnT4 z4f+X03ko@bwo56a*f56pUVb<>92%Ck;$!A%Fh_BG8QJ!TAufk?nNV6wL0R!OJNv_B znZ;skQ3u~!Q>c*e%A1#|Yc~AC;=VI0p41>^J#{bb9YB?1<8Zd@TeuY7G|mpDQd5{g zky4x#x9Sw4)?d*o=BC|HL(bvrDb>MpSn@Ib;D)A))TCc&Ym}pTau`6^{{Sg{3h(xn zp+w4_)zoa}R(lydQE@`CQD0~yXBV^72$)n6A;890^XW3ZIGkzm)ubG@B;jFkpva4}Wd z7^Ff}3&x}5n_sy^a#KDO6|5#5&xMD2;)@nr({B>7QPjyA%b=&SZpIabM+#tCB}~3a z4WnOD{TrQB1)#X9R8_bRB}H2qpAZH~S-9Fv#qJ0*xMNU6EM`3v>Nj9R6JMaKjU@?Z zqf+luoxrl+cWptiuS!{nJ7&T9FuI8<_bkHk9EL2$Uap`ttL9q>Vk3N9JrQ9K_mzM! zCdzTyuJg+fnygE@4#@`34vn zeaewsJFGD#UlwNqdtno-WW))ViI?p_d^0G|j~d`#*xsR5Gwjx45|tS(L39~I(8sx2 z>UIR#30G0p<{gAqf?ju(H;HCoF@40cp(5rTFdq`}bn_@I+_RA~vdx)^(uP@0!YzuQ zse3t{@*FUSOcPm(1{gtP7&K^#Cf=n(FzkIHdrA+C1^(j~wwi!G4ay?#bH*PZG{MlJ zkMxURYyL)HX5GSJb*COFA#y{Q592D}X@Y-S9Aua15_PsZk7~4GhdA zBF6XTKMb&{Fl~SUDzzH!KNE0{0{Vj3#|6Y685NfKNV(KqO3}l4 zo7Ac)XDM1-L^@^pxSJT~-$S?+sYeuD$2;PiuR)DRB``Ef?~ocjibNg27zkjaia6IF zF;-hD{{W(DI+{!*&QM&kU`cM6mthj3 z=4A^LB`_MQ5pAIvNWo2O-6FlxDcZ<`z+xes9m;%ne-V18gm84M%}MkjeB3b`7)YxC z{ma8iwkXJ$zW(7$R#)fD9cRgdqq%=j=<-K#K=TNp+NNfr2n?msnLCMgNr8=NsXsVYBaSlB2{XmO%h~;$^E75yYrTtby0|O8D znMM!ZG>dG{a5X_f*o-YR1mc$m7@)wh=U|tD9DWx9SqQuv2)AaKL)OkV1gSC6_)rz` z8GA3eqFq7jh);5fEtZ(R8}3(?r=MNjW(Wq?n971#R=mU8OZ>srJ>0D-HW9*FT{t%$ zb2k+;Q3`|NJ!p9&I4Ru-MOkoN17Rv2oj~K6jRId3KzvKwb=QkTAuK(S2o>EsuQ1Vi zADBf}vdYbQ_Y%sCyXCFKjU_F(T^_Ob5}<8eLR4Zhh1OtB8ChBY%o(&uMjKIZx|Q2f<@H56;hXM3XCG@DrZ$K3YgUoxo-0=+hd)? z955OYLY7gT-~KYW5FEyJGk%j2IQ=4_Wr~n3@hB@^2y|cZ27iFe1OD8I;kcq1V3@fm z7~zYRhLhCBqyoG6mE_A4A{(7W^g^tD^uCo!jv)z)LS)Q;4BEQ$J`v(yp^el*rY};4 z{qVM!8u1rOYGK`t#=--_cj7zlgD9&pAuy zN*G)6jIDZb%#%n7bTXJ>e|Wi3^36uNS%f8b!w6gnecZ`;UC}mJbab2U)DJpuxF-kuWfm%JveZvh!r7-GX z>dIkePL!eh!ZFV3Sneh64hAD5-?(AAe4!AkGhEAULY*oY;nX8&u<_edSAP>2-xmes zCXafK2wlrFkAz~?#j&q2lJ7JLVz9x;ij>qy_S6-<3=AlSG(xd~kB3}U;DTJgJ^U{Ta8CZtMZP+ z(S{qLOknIGh)VoQfC+B8X0{`++Xt)*>nfrJ!`~q>q{Tz-Rc=n$vxl3NQlkz8(bkiG zwnUdQ)M*qvv8yqnTr$XZ%)92)dz5BTGjfyV4BntRg$L+pWe~=_RB(ee?N=Lug>~wp z?gMCoQ!9$%kLU}m!BwI?HWRkQ+O$t-zVKf2WaMw0e=_2q_Wod7PO+Ut>tS?=H6BT}zu!YZC;KP!#5@b+%KH(~ShYUe9U~p^ z>w|uhKEtO5whfC?Qo9#>!dPS57^q2&vN$v|4c9eeyQGblC9rJe%wT@r|RI&fXe+=#1L zRDW5kGZui5v>+m!96sYu8aki_SHw3ljkTkjJCH1yvshZ&D6u(V0v-i1KE_3DnvK7y(*VX6Pa3EDupk!R z*q6$BmOg4XL01+Q3eY7tw)J7ciXhM)XBsP#0j=Z#cdLVOiX)N%t>ghHDz7E8Uv5OK73V52-+_2(AZb>Sd*&6 zse1x~{{V^w=z=u4w8wGh7v0zfS`-*oh{ug~0}zjMB=tA)gd5ofDIg0=S!kk(m`YGM zDRkX(L+VN+^GH?#fkPo`eF@&UH>j}0iA#jff|U;`t=0o<3UVye4mLCtTER*aKs5zrt+Pv5B5uLXBv}$2D%1783jjo;MPP7>p@jiYtLSi;eydi zlm;jJ1_Bo!Y&GoowmTsm2c_=WArM=M?oG%A*5_2 zA*8H6W(72!7+dp5kX4|~%HlwQb{j{Kid5B29}e$fHP;wtun)r?6=kI-yEQZee=xt_ z;nVn}6#%0HgG8l`7HO#JC?E`AwN;=AK}OS$M%c?L(2t!X;uE1khqp!a--IxA!r)K@ zUD_?;0nng8*qxu7{C?bth=D%OW8Up!$fOKtNNrjq<42PmhB9N-AEcv%Q32+UkcAqj zeE$G9oEB>vgfFn4@+-hy!NRQUc`}cYe@HFc4p#wSy?i5qsth=(T5;wE2+&d)^oe<4 zw3QpW=DL;sDwK}(!KH}6jYtQg9G!k0NBsBDi&xM_@$dp^c}^_`Wx?yWCMvR*))-Bz z(tOHXM43i=2EJw$u@S+`b;K%73)H+WO4U&9sC+90gKEW36!sgJWtonj%`4*FVq%a| z+~njO)Ev`=uB!%$aE>#SKt4UB7Z!%S#1(NO)ngwq`W0kVvpSi@3eX%jEBivhg<_SE zs55qIsV@RE5Lhe3aE>H4nNntk)v1{Ny5I0s_9jd>)H<*`S5h zm&F^0b~Yhzdtrit2GF{%KB1ccWUfAg;g%I(!^wIJexNnH2cY3Sz+C?Tc7HV}#n3-w zSx(pCF4yT`4K?Z93Mf$kGOrMT;azq;nga4yhA-z^DCDWDm6&yY@LOyyEd*o-z$@j3 z;x(0E+t7qLf-GCX7r0RB&62y=K}8DJ8v=|Dd&I34v=%DhyXkLabic(Ui3@8`5)`y4 z%o_m}G*Qb6X>~xmwCedK&V3@?sqqkzRg(?sU1gClT}#>l_RClBWzN%%&SE7aLSxFy z?pRVV^SZswzd(%mtO1;_k|=HHt%-?KQoW#AjPM3qq8f#1s@8yEFaddYEvm(C+&Srk zC!wGvL+)~C?x}ZG+)mPnG!{J#eNtWnIxRNgUYdzd;|CF+TG zQAbEC7=_UF#foBv$hNOE#$+%&$bhS$)>0dD1<>(ab@D1 z%;#iPL1p?<-;jY>zYBZcztPmb2ciy++*mm3IN+cd0ic5wu^YEAn@WjIIgRm&R8cZzG4-;}w4EwNif8kC>wAuMD3aEp$;E1#BkQ-!l3LLK^noP-d^sLb(Sw_cA_-m=i`FBDp~L$?)Cu1)vV(0jSCmt>ol6NDCGBbU zvYrFvZ*de|K--N+3NHK`>z{FSuT3{7^SGj0RvKN2fc3UwZ{Pik=crWHOJ8<@W2X3r z&%9+U*EMpk5v_%z*rD(6rKa3U7nqpV5*R&_bhe=B%}OBxRfz2F8A-9t16GI(*F;ov zIhMdEs5442U0AoAA2q0;M+hTZhNck~IJ&Y>WXs3Ldm6rn<(C4&3YuFNpBES4TVj<; z9Nxpu$lt8Py+OnmN3W;kw zCA{U^LeK*>Xu~X_7&=yH-M%ut%~T@c2Tz#q#{!3^xsE|#D~EzJYD~U`fmEkEhp0EJ zhbQ+?go3nEHn6MXLAW6Ytw$MwPESsB)ibmX&BjAj?y>6JRgUABs(NA=na; zI)iWy;xnsewM;RwRw>yQu7=%$Dk4(cJqCwmxFC4IZ;-by5t^x_O#m@BQXuCVf4t%g zpjexBzTmN1wyR#@6ctebt5KVtFro!JP<)8W*#tGxbP>8GCGl%&A4HkHd70JH}P;yWuwe?5KDgF zqJRUZmg4LIro^Zo$Ki{6TO<(e6WXcFE8A&)gk%!jo3TXgVJlNvpaP%;CJ8|Gff}o{ zlCVpk0|QlrTg0)X$XC~T5F2r8OASLtZ_ne(9g!<^VOLp~B})RGr7xB=(F1IA$yg{Q z;U$+kg;J&+gazTmAzm-S*v9W~J*z$|7-e~Bvqar-s#hstzWAE9x>Z)c1a! zS3d3?Qr5^;fK^Y0k=V(ZF2GgP6>g)6=mZVXf0|h?msNE)_j&u;FqA@4lMEUbV64iQ zaRIuSj~OI9P|CqO6`HQlA532oS#*01U$nH_w()t359wb$EPW)=?M(ata7{Bdl4Dzk ziS|F!eHm>LegN%U%dgOO><8tUD;oj%>)<{mNQIeG`$w5hv!H6#t;JTsFt#7QC^2&C zw%4C%APNBIAA^yAO(VP*12>DVU^X@vVDUlGz;H~&KJ7sGIa3;hqPT|vpLM$#O~T|- z(uR*xvToeM$?v08z6!VC)T1@)Wga08p}n_c-}bNQ@&s>CjEGP|tETra!)#vS%Q&;( zn-JvlawIF+_Xmx0sC9@*c(i_!t8DoH0NGZJFe)q#See~aM-ABlIri@6PhC7Wz4*}ry zcnCBMDVV~;S#lo;_=mX=h2By9LI$H+e`t9G^8{_T0`h)$7KO$;ieiL{7OFr4mNWsR zedyou4ul$M$D0(QQ>#Pbp1#5^C%5fYF$%;!MG6uAq>&@>3JxLEj?Ml`3zGH(ZIer7z}H6X*49M#L*wQWKvN*b0cubAys?Z&J= z_Hixr>+B3W$`8W%msR+tf7W2Fw6gHkkQQl&W5-8O9wY@ zM0m+nu<8-BT`zFqb%AnzW;B2uCnu5!(sO&6Y#s~F z!xIpw=*uToUxc|%I$O|&%G`3l6t;5;Gl4<^{0sTdQ2VSrVL`!H(5aHPa1!PLYQM5w z!tH7<)T~z02euL<@LoN^$ce*GR>jmI)6I*j=Zmro=3~Gwlm^_=^()#1sO&MOS>))f z%^Y&Pua;TMA{17r<|s;`%l;+k2R4sOx-oOjYzO59w*BY@&d_EMEW$#R+@rfiwSv`h zHa)her?8E_9Xt=eN0RA>79`8V;t~JRC%Nzf2e!-B1UR@i)|h z!Ux2QJ@_Do!dA*x5H&?mHE?nJQABkFR)#GwIZHvv5`nfA`&QE%V}`|BPw4?++AcrVRf8Xlz?-HohibUWKHf_O%cSX49#U zkUpZSHc`w;X>^s>Y(V78Cxe!vN|Bxu3s__sSgUCb)yGp9uIXVY-Z+=!u@SmhhS4tG z;`3RuOre{)$*EFJl+s0>6|aAcPO#@{L;M2EY#o^2EFr6<(~@L%E695|mpx47131Kaa{-kQQRsVxjLV$CSBZ zGmX# z$U-wX1?zP!fXiIYGJ~eG({Z2()>)<1+T8h#-r8V>z-N3zH&=Ovd^G$fvx_x==6q7n z;4hT67b=|#dSgChu;^8#{L529R@#jY+9pia3I)cc_YIvtD4?Q_BX!Yqm&`?QD}Q@dm$8Zx@C|fe zdsy3OHxY_8fL(KQ5>&|W9^t|Ywl_jpUgS4Yl~-ULLzXEH2sL7@gJP_Cq3&G~d5^(w zO2a`H*_U8Z^$-S+#U`YsRaJ2;7YpmD7JM?LuG3NKxn)D3*~Ni92g$etDwJHnI@u3o zGOpGKyJkQHMZ!xhw`_2yElijABf=0udHCTtw5 z7XeYCz1z@RiM_H5^Hujm+OCMZF>@53A&RemOnb6@AZi5xC!ndsJgYy+ z=8m-}lsrmZ(Qp8`?q?*}<5!9Liv$id^FHI~z&tUO4hciY|U$DlEJ9898el=Fdn6T(?yTGn4CUq(Dil<0^&fARUE?z8+fbpSMf zOQ-m0QPKPWG#~t4c*GfmiDN3S6F_#@-`bxG00x>;ZAwC3dI&`|Nta-KFc{29*?q9@`efIx;`vG=!r}Im3*5Wp%jI*HH_#;*eM$4)ad$Hy zg9-tolSxzlRx|M;`$(8iKb|E?dM;$ozLu=6?(jzS?5gjf-)MY8b3uG^Y((;J^oLPJ z!aRUSlt#?pxUPYsdRepp1_|%^ysA#9hl|DaFRiXh8E_YI=A_c`Ru$jL4H0hBZ?+{| z>c`;2O}rTgXZ+1hUIzhnRcG7`r6Jn$Y2Q}baV++FT2So>oew{a7>Gg&D%E-dDx|Ta zH0MAS8w4XXkP&+^it`l_oG@_L8I@0unbB9#WyEcFBV}Vg8q7H-waa=HW#WqoC&$vo zbF%1KczA?>QDQbH2**$2mW%+I$e?*;Hz?=m(^UTe(WoOuXsnzZUVegG|EqU3D>_UnT-?*ADlqx3L@u!ISHnzKIt;Qj3TUo#s*ff)}6s=n$MqX}r*lYO+ zyH;9^!9s03G23GDLS>%>PC?3f@dMbEQEND0cut{#s-sa2w%5WKUf7pVf$r9i1I(>- z0Egb968fV$D~^y%f;MGZX@nEEap9nfVA0 zz+elZ{8APtaq{LRBOsaz&kheG+MP8E9Jgj{K~cq zLY`|7)Ik6t>5c=GR=Ivv9A>6A0U+QeDJhv(xG7i8U=H613B0OPThZXuG5~Jtbu5&C zm>QqB!Lk|4x;csv2wAwq{P?g4~JruJK5Ptk)Lv^iVg=01S}Cwa@V??bb*P8>)z_GVYn*+kng(FdJHN1zRf-3cwt9e1U04LDb2k)l}I|ynBhfM!FJJ^bNF4~UW+P> zu!;zJy7XP5?-ORl;JLK*v|kdqm(VwC=l1=w8 z@eZJSFnE>K%#oZ2#%po78jy4$6FgQsjLfm|H=Tbbj9gS;IIc<>L@8pJaKXg{&58qTN`&b+C0~uW#>db})EGjGWbcpnHd}rAOs=~hEcfnjvz&~@YBbJ5MbW-YOxm{xYi{c0a z7(jBY8a>5_`(OZ2HZ3d0qXTiwP}Z~!#{6Ka)I4N|$BP@{;590{SA`|xtCb2Zg(r?L z#A|_y_U*^rL#cNs^j&YlSKg1;rK6Yv~O7d0Kd$+7j^#tf8M_dVY{ryvRX?QL0fe$JP*E4`@iV( zQk_I2jyRUiSqP@UG7GAAEXBa6Es?|FFR6i%x?_L=SJWs7ph`Q&`bUBwC)o#Ojd~HY zu(=M?^a!@lm0v~!)uWBj7$5)u4F?e4Y8AJ;6EL@%$Q$bETmn>&Ri>}Q8;%s_pDQQD zx)|X=!B-(R^Kh>}lEHRxdY65aI^w9*daLFEfC9+Jd1U+?h+OyFSZ^d43@X55~&`5Ssr`hDOIa#@qp)BtnKJ?y`j zt*Ani#V{}g90UtMlq0T$J_8w`IZHTfkAgc(lSRQ#?$y%^Ffu?nqQ1f0%@eR>K16dX zgMQsld9cg2Uoz%2;#;>Puhj%VPWbcsh9JRm2*y`M1U$ax}Ofu(Tnmf-vT zf%N(*G-T;RGaQFEgt~`7t5VyS8RB{r@%XJ8yB?$&)E$K{MzW#=K9MY)Y^~VR=m@9q z9$F)Wj@-C0Fmca=PiZhKMtSGBnet8 zcTr0y@KvxJFa@!(s}nxxNPo67sn)Mf@9lz#32`6~s}I=`$QjGCD@{ zP!2N1Tz*?Zsa&DRohQM#exg!y$C!@szq?2#d{_?GQ^`IH^`ZJLib=4E6W0@Jjb=U& zz_eYpxs6V7T^*6kG_0C8N!-Iro+SAIk0m_Kw||8;S<=eoS=2+aSI^u55TwE40iZqe z0L5cf!~iHL{CUZG?xK|Bm~le*IbJFYn**AD)1NEM2EvRA)TmrGV8LT>FZ+RJPb}cd z&{GJWUWZe8v2rm+PD*D6Arli!#{3LRcE|8{OH6>HJc3 zoD_1@F8~-oa5qY8Mc(0=Yu%LvKZPhAx51ck;(+h*GfbqvV^GvDp6rh}V(I zBwFl-Vk@dr@7aUJYwkDe7a#egrmMR-9*9N|0o2pWY-)pXI7y8 z)dkbKFX}q`u|Ko`=|hw7h5;k_znMk{M4zYWKg+S zE#T?~)dop`^prYBFf(rs8Iq}6CTK5Y2G)mTn{?=T~Buha509#=rl>y{H z%OjF#bQ`&5CPGWYb)F-0JcBmWX!Q!Oysw140Fj^rJg=KEQ&{xD7t9lIX{9iDUal@v zn_qxAA8cIN=}mbIk4Lo3fn2?6+Nt$N6L`kUWf=L!&PEA!Qr)YeK8QNo#e#J}x6~xX zq4+*|i;-^l^%;nx(ydjqU9P9PVVZCcRorr2qk!dQL#+CPAjBy43-*NSQCz5i&x23o z^2H%b+2~1RQRL^P3Yr&nf7*z@zE}{3_$*0;SV?&FO@d-ZYw<2D-K_2Ur;ND-bLAUdMXJ*^k3N$UJm~N6sT|z zW{r9lo+$po{9vxpu`63&ONZkOwutr$u3Ox$5qIgKZijAj9UdpUQg_tC) zFAWSH;ER6$07wA=W62OUA5x0Edz7a0SNaUMvqn=t^WWqw*sLKQlL9Q z*#T^q^g^kOKGvfMaK62|Z?fJKN1gUaPAtoLeUNxKb+?LF;I`Ak5Q-21 zpbbD83`&3;ejPuWRVeCIqr?x22!bc3Fwicic)@u<%l_6;Ta@R>=26tI#Y%~kqJr#4 z3GOj!qIZhN;2;ETke#R7M-rV81f;SdZj0~#0F%vU`snHastigx{+CbiQUIV2Py;}E z{{ZUpv|M4ZbS|!2tqYCPOXX05>V^Fi?WpKoR3T=>)ie*v4PxGn(P|zYLtG+bc)-nm zNu^D8l>5AZ@(#%a2EdL01UK5AYCC*$0lnmYE#e(yO8Nn4xVGQRr}`;r<}2I|7b>kD z+5X%XO6g^;rt5CvOb(0n*>S%)pA)BeteY!3N~o36&B}c8Ylbz-J1yCJ86Ing zkzD>3h3YIDj*3+91VntO8-+qMVX8?&wAu6WFS%#Y84P08V{lRmH|SVC>ie2e3srdv zKiQTY9IAt%M-G7jI9M^R*eY{CoQC0cY_2ZuI)42 zqzQX{BH7*?)X+U#e?&X3P0W*Q*&YfxbvUt%%X^BXxuH%`V0p2NsOnoqN{EI-Ku`|R z)W-{sj%Zy0!Nj=E+x9gs`P8%m-)B;pR>d-$c5!nU0Dw-4u$`3+4{I1Wvd7Z*355)a za$8+&c(XsrMX+Wbg?bq-7SozJW_4)iz&sorM%NpN{{V=V+y!)UW+W_*&|&KUrehxv zFkxZKOHUEfU|HSnxjy1!(N|q%bMpdOHItCETa7TPfv$tXa2zC4Eqnx8tAHl$O$FWd z@>a(Iwj@?Ym$BS2Kfj|Ku-fPf69|mChKix^EjMixeWA}bD8S_3%(0Rvql}@)s95ac z;jwbXSzS#4gNtB|RcLO*7aOhqDQtifDjJ4CkegFQIb%memN9axtL9b3$TECFJ&_fN zw>#;!79N)NA|A4eC!Pn6WvGBze<>QeDE_Fm4IwL%G#k5EZdt`u1yoE2c)KF>I+R60 znyTwLu3+G5vwUv@Ds;8X0@CbD4>cYKK!KY<)x-|s9ha1-qRU9S>>j>?B1i#DUTyZ!z@r#3Xv#qEIy;!;ZXyC1E{+xnPt5& zGoJ-n%%cNG0SaC;dmO_hyL)Y)VX^i2#MBpWl3;si`H#os1s|2b;7D@mIjmhn3a-;2 z`E4sG3T1_g-RYrb&Th>mUtEXtAPE@g{ft| zftGNUxwkDf9=5lcveRXo^8mR7C&Y9KJ#G>()~3a>NqJgw=Vc%}JiE8vVkFd;#5{8yEG*4y(c@D_S342C6(5YYc z30ZImc$qdCmjUASP6v-N%DN_|g!;255{^)H<>{B%7pNVc*cY8sp5ScI@51_1@hsmR ztO`lhtjhjxWQ)JV+HlU*zsex8jERfF)IkR=C{$DtbT^*+hVPUJk6?k6Hx`&+dTEm+ z$FcDjb--~S0}+vZHPyiEO6J9@j>7~00B1;OW2;wQF)py^6|N$eZJZ1HRJmT12|&S- zZ#C)wOL-VvcHqq_BWA`@fLNR{`iv=dEJC+kRKwj3$#2E=6DV@i&=?ZDPLstfMO)yF zIuwS;xB+W<#wKHp1{{9oB}p|(7yj}5eqA!^kBeay1ws;+6tzS`X-mf;p;UB5Ml&o@ zo-k5%D{2h}%}~Vy4P7&}GJHykF*3dmy~cg={X(ZlsEt6z?fT*@=)IcXab7!yBNG_} zUo39d@Yp{CjsB3`hZUnME6wX{XYHCJhyDqX)&TQsD){B%5h110X+OG@voI3IK~S%{k9IJxsyK7w3cJ$IMH%S45}&$;b71TVUq(C{>gm zJ_9IT(umrPhDtbjOex>)0(K^t96BlS#3q6&_&zrM%>X&U_|$qx%U)O}!5OoB;8tA4JEOKGfN0sd z&v%@|rYQ@Rghgn{7c`s^lGO?qqlNS9!TnxcPD!yb*#QroK^ZI>n#*-P^9t4vI|iQ5 z@|eMn>i+;(ai_9NJkmZ$vs!sCC*r>@pYsgOsz3%-*HK~@Y;QI{re6M_dg!rQGE8YV z3@U6UTP_bE=IUJl4C4WFhX7*~N)8|fijJS?r0I<)w;354j|CtGn>P*(l3B=-4AWzR zJ4xlh@~n?QdWQMpzw-Y8YFys}!CC<#UkQqwYrz7w5O#hLS{d=UXaI7Ee|b)oTwBmK zctM6tv`4&9A=__EEHt{;;kl|Kma>e4*FMD7=LM|y0R@dalC;K3O$&%FWTe%6F{m9$0Pv3!mYARib<^1BB32kb7?~cn zJXxQ{j8)+ZFv_g66m$Oo>2@jZL=tVC_r>~2tA;U8{D-9lRYG+u!dGQi#BK?0s9N3f zkf4uwf8H7ig;kHkr}0Uarn4V!c~P7iG}Ee32$_X67IS4q!hx*7_W_cw_%jCkC|of@ zer1Odnk_S18e4kRr$oBNei4^7d^V2@_(-dDj9gU4aG3DuJv89lC#LcZ)S?mWDQJCLP#gjOwvj{Xd0G|m6V$)9Y2anlOAAo zBxE*6ab-4Y084Im$Vj&%f_14z&1Di*XWJ z?8tUL2ycs*Vpkzy>45WxnCI<7ZH0{}I&6Yb4%N%DufAcR3Km|%`i+VvLLXSIzzYMk z0g&ZdxK=6HTlX$xf%KIn@GV~5fWwB1)Vqrd$$MTIqy8pL z3f=|$ljLH_sxyIfc3KZgXXsRG4!ulC(6vW3s9^z1-1v#8MP7-UiV!1cLh7ic0kG)X z3paPdi}fuanSnwd*loCpb+@Db^Z2EsdWO*7l|sI56{jeu#L?!^o*&ddD%2O;CJS~; zRO%x5Ofx>o%TelR7WV7Zt~k@2VKZh`Jd)1n!PU{)=gbY1H+NbW_zwUG?ZtcqJzO+B z*D!C*sjSPPFgz=&j#vh&hA|Lq^B4%^98#6{2)L0H;2xZj!?R<2tzPK2*ZBPSoMHm6 z(GmL|dp*i1901}S^6s_97_O5M!0~zx$D$*_D7!7hl>wk+_v#W7%_iN{8?NY$-^UXV zl7laIxEjx9%E;p%=2MWBaBF;1?F74LIp6h9-d9@ya*LXS`oIoI_aAh{xe(3xj!qQY zpR`&_AYgs5M4(VSH5Q^)cv30MVbB4q7Um0kK48&JeNCJAjewF{1YD{b_kWIAP*_Qi zj0`WU5-uE^7+-OYfCFJ~HIjpAs5P&g2WC3+3nh}RZM%%XSe`Kj+PGAFimoi&ZUd(N z^)eWexn8|b{Yj=#(uk7xA!7X79GGkttn{&wN|_}+`G<}Hz6L@02I!PV0i}Y$yymW4 zaaESE>Lb!(v}mJwgMkyQ7)(X^Ws7nK2911%6Qn#$gHEow{x3IspOn~NrYa5!s|~Zq z4;455;XG{`Gwv{mv?$8gBb2F{fx-~9Grf%v1sF;%WNd#>Gjy{hB}U608QXkJBS4}0 z*UYvt-_h@HyC6_pn31tDU^QXbBQf9teF}DlQrt!X@iFIru`J>U@1Y|xEOT#zoJy|< zKw7x&P?=|T*T&$&9WT_j)Zz*Hh;85~cknk9Ll*?R-Ys5xo69;%SAm#Qjt=Rj^ngz8 zbF~PaYU34LA#i$U=w&X`Ha13%-vn0^eDlJcOL*EFM*ab0seV^5*RF zLZkwymGdy7^ixdsV9h}k3ajP?vMx%vKETR5%cfybr3I}zIJu*>d6uGzN^IQsI|$iO zt23K##f%gZkkEW)-%+*Vi;9KuKqX==C{<>TQ&B5Wh~9@+%qyWw4e;Ivnwiq6!-=C{ zYSY;YlFn8OG6pClUf6UiZGPt2It z(hPVid0r#wqSI@5W#U~Gf{aFzsXIA}p~S%g)+fP;p#Xr}=VZlL%X zEmcN|^^5kHCai!HB0CS5ig0~HaxUf5>vp$PYvNid4vM}p_awB_C5WrwC$otkL2n5> zO7-g7$soL-48Xx`wiWVMh~m;>2_sdt-xnO>S|{3q;CLl9MRgGfgL{r-FWS)y_Yx*+ zyd?@Iz#(<&b_we$WU1G@R;QpX;$q*_ao)xH{s!RUrh|i|B^^priD@!4 zvdw7TYuaLG#3=g@OHzwtNr;d|D9#OyhS>PJ4QRd(c0T3w! z>6CQl>$681tM7-~ac8?34cQmlCWc$U3wfiAibl5aFjTuM9yTU(0-ilvnWF6x2}uh{ov znjlhErhc*;3m@$O3aA0c;?}L!B3Y*fS4N`f<#FwkRsBS4=~6arXGrMH%GsDfU>Qc8s%pZ7`u2RcL`s z63P}UaHT!SqC>**0}NcOjXwCy3hZLQMNR||>aJx?7fVY8zkm~2k5EDaucwb< zZ!4erpF)@-005TWMK;wfgZhTystIMKjO_qtJwD}1V-z!wk!8W;!0SUc4H*K6MGF(H zS>Rzs%xVA%hgyOph=>v`8$n@BZeweT#8Gv?p_r^nW`VQ|)HMjGMj(UJS~VO+BV}*@ z06kCmuk`@X&i?@No2uJZz)5aU&6T(?9=Mcy6o@Q^ z+z>f@*vtT+YES?r6F7Xj^N?klj$RedpXfYev@e;2nk`#*4` z;;hjcpAF0{0oB6Imi`TgTvN4R&%cP+Uno6E5{kHQg0eyD@GT7Q2HCizhW7&6lsg>M zYHW^@RvE^ z*Rk9^qqCM4)PB$Ph{r3R{K}Hkhx$svYOM;#D8Os-NjM!EIFxjM3#r09{y1T&$@p~* zO&^1QfzR|C{5za|KjL%zeze|f%@c3K{u#tI_xN=U&J$_+AB`cb(m&eHe$Vgt|Jj~g BS04ZX literal 0 HcmV?d00001