From 6939aca1db37cbfe3031a93562930fc6a14f169b Mon Sep 17 00:00:00 2001 From: JulioAPeraza Date: Tue, 30 Apr 2024 17:20:07 -0400 Subject: [PATCH] Update ibma.py --- nimare/meta/ibma.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/nimare/meta/ibma.py b/nimare/meta/ibma.py index 0ea8214e0..df8704ee2 100755 --- a/nimare/meta/ibma.py +++ b/nimare/meta/ibma.py @@ -379,9 +379,8 @@ def _fit(self, dataset): groups = self._group_encoder(self.dataset.images["study_id"].to_list()) - corr = None - group_maps = None _get_group_maps = False + corr, sub_corr, group_maps = None, None, None if groups.size != np.unique(groups).size: # If all studies are not unique, we will need to correct for multiple contrasts _get_group_maps = True @@ -425,6 +424,7 @@ def _fit(self, dataset): if _get_group_maps: # Normally, we expect studies from the same group to be in the same bag. group_maps = np.tile(groups[study_mask], (bag["values"].shape[1], 1)).T + sub_corr = corr[np.ix_(study_mask, study_mask)] if self.use_sample_size: sample_sizes_ex = [self.inputs_["sample_sizes"][study] for study in study_mask] @@ -435,7 +435,7 @@ def _fit(self, dataset): else: pymare_dset = pymare.Dataset(y=bag["values"], v=group_maps) - est.fit_dataset(pymare_dset, corr=corr) + est.fit_dataset(pymare_dset, corr=sub_corr) est_summary = est.summary() z_map[bag["voxel_mask"]] = est_summary.z.squeeze() p_map[bag["voxel_mask"]] = est_summary.p.squeeze()